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A  Monte Carlo Approach for Exploring the  
Generalizability of Performance Standards  

 
James Thomas Coraggio 

 
ABSTRACT 

While each phase of the test development process is crucial to the validity of the 

examination, one phase tends to stand out among the others: the standard setting process. 

The standard setting process is a time-consuming and expensive endeavor. While it has 

received the most attention in the literature among any of the technical issues related to 

criterion-referenced measurement, little research attention has been given to generalizing 

the resulting performance standards. This procedure has the potential to improve the 

standard setting process by limiting the number of items rated and the number of 

individual rater decisions. The ability to generalize performance standards has profound 

implications both from a psychometric as well as a practicality standpoint. This study 

was conducted to evaluate the extent to which minimal competency estimates derived 

from a subset of multiple choice items using the Angoff standard setting method would 

generalize to the larger item set. Individual item-level estimates of minimal competency 

were simulated from existing and simulated item difficulty distributions. The study was 

designed to examine the characteristics of item sets and the standard setting process that 

could impact the ability to generalize a single performance standard. The characteristics 

and the relationship between the two item sets included three factors: (a) the item 

difficulty distributions, (b) the location of the ‘true’ performance standard, (c) the number 

of items randomly drawn in the sample. The characteristics of the standard setting 
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process included four factors: (d) number of raters, (e) percentage of unreliable raters, (f) 

magnitude of ‘unreliability’ in unreliable raters, and (g) the directional influence of group 

dynamics and discussion. The aggregated simulation results were evaluated in terms of 

the location (bias) and the variability (mean absolute deviation, root mean square error) 

in the estimates. The simulation results suggest that the model of using partial item sets 

may have some merit as the resulting performance standard estimates may ‘adequately’ 

generalize to those set with larger item sets. The simulation results also suggest that 

elements such as the distribution of item difficulty parameters and the potential for 

directional group influence may also impact the ability to generalize performance 

standards and should be carefully considered.  
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Chapter One: 

Introduction 

 
Background 

In an age of ever increasing societal expectations of accountability (Boursicot & 

Roberts, 2006), measuring and evaluating change through assessment is now the norm, 

not the exception. With the establishment of the No Child Left Behind Act of 2001 

(NCLB; P.L. 107-110) and the increasing number of “mastery” licensing examinations 

(Beretvas, 2004), outcome validation is more important than ever and criterion-based 

testing has been the instrument of choice for most situations. Each phase of the test 

development process must be extensively reviewed and evaluated if stakeholders are to 

be held accountable for the results.  

While each phase of the test development process is crucial to the validity of the 

examination, one phase tends to stand out among the others: the standard setting process. 

It has continually received the most attention in the literature among any of the technical 

issues related to criterion-referenced measurement (Berk, 1986). This is largely due to the 

fact that determining the passing standard or the acceptable level of competency is one of 

the most difficult steps in creating an examination (Wang, Wiser, & Newman, 2001). 

Little research attention, however, has been given to generalizing the resulting 

performance standards. In essence, can the estimate of minimal competency that is 

established with one subset of items be applied to the larger set of items from which it 
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was derived? The ability to generalize performance standards has profound implications 

both from a psychometric as well as a practical standpoint.  

Appropriate Standard Setting Models  

Of the 50 different standard setting procedures (Wang, Pan, & Austin, 2003; for a 

detailed description of various methods see Zieky, 2001), the Bookmark method would 

seem the method best suited for this type of generalizability due to its use of item 

response theory (IRT). In fact, Mitzel, Lewis, Patz, and Green (2001) suggested that the 

Bookmark method can “accommodate items sampled from a domain, multiple test forms, 

or a single form” as long as the items have been placed on the same scale (p. 253). Yet, 

there has been no identifiable research conducted on the subject using the Bookmark 

method (Karantonis & Sireci, 2006). While the IRT-based standard setting methods do 

use a common scale, they all have a potential issue with reliability. Raters are only given 

one opportunity per round to determine an estimate of minimal competency as they select 

a single place between items rather than setting performance estimates for each 

individual item as in the case of the Angoff method (Angoff, 1971).  

The Angoff method and its various modifications are currently one of the most 

popular methods of standard setting among licensure and certification organizations 

(Impara, 1995; Kane, 1995; Plake, 1998). While the popularity of the Angoff method has 

declined since the introduction of the IRT-based Bookmark method, the Angoff method 

is still one of the “most prominent” and “widely used” standard setting methods (Ferdous 

& Plake, 2005). The Angoff method relies on the opinion of judges who rate each item 

according to the probability that a “minimally proficient” candidate will answer a specific 
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item correctly (Behuniak, Archambault, & Gable, 1982). The ratings of the judges are 

then combined to create an overall passing standard. The Angoff method relies heavily 

on the opinion of individuals and has an inherent aspect of subjectivity that can be of 

concern when determining an appropriate standard.  

Some limited research on the Angoff method has supported the idea of 

generalizing performance standards (Ferdous, 2005; Ferdous & Plake, 2005, 2007; Sireci, 

Patelis, Rizavi, Dillingham, & Rodriguez, 2000), and other researchers have suggested 

the possibility of generalizing performance standards based only on a subset of items 

(Coraggio, 2005, 2007), but before such a process can be implemented, issues such as the 

characteristics of the item sets and the characteristics of the standard setting process must 

be evaluated for their impact on the process.  

Characteristics of the Item Sets 

Before a performance standard based on a subset of multiple choice items can be 

generalized to a broader set of items, characteristics of the item sets should be addressed. 

In other words, how well do the characteristics of the larger item set, the characteristics 

of the smaller subset of items, and the relationship between the two item sets impact the 

ability to draw inferences from the subset of items? One efficient way to address this 

question is to place all the items on the same scale, and the use of item response theory 

seems an appropriate psychometric method for this type of analysis. In fact, van der 

Linden (1982) suggested that item response theory (IRT) may be useful in the standard 

setting process. He suggested that IRT can be used to set estimates of true scores or 

expected observed scores for minimally competent examinees (van der Linden, 1982). In 



www.manaraa.com

  
 4 

fact, some limited research has been conducted placing minimally competency estimates 

on an IRT theta scale (see Coraggio, 2005; Reckase, 2006a). In addition to characteristics 

of the item sets, the characteristics of the standard setting process may also impact the 

ability to accurately generalize performance standards.   

Characteristics of the Standard Setting Process 

Almost from the introduction of standard setting (Lorge & Kruglov, 1953), 

controversy has surrounded the process. Accusations relating to fairness and objectivity 

have constantly clouded the standard setting landscape, regardless of the imposed 

method. Glass (1978) conducted an extensive review of the various standard setting 

methods and determined that the standard setting processes were arbitrary or derived 

from arbitrary premises. Jaeger (1989) and Mehrens (1995) found that it was unlikely for 

two different standard setting methods to result in comparable standards. Behuniak, 

Archambault, and Gable (1982), after researching two popular standard setting models 

(Angoff and Nedelsky), had similar results determining that different standard setting 

methods produce cut scores that are “statistically and practically different” and even 

groups of judges employing the same standard setting method should not be expected to 

set similar passing standards (p. 254). “The most consistent finding from the research 

literature on standard setting is that different methods lead to different results” (National 

Academy of Education, 1993, p. 24). In various research studies, the item difficulty 

estimates from raters have been at times inaccurate, inconsistent, and contradictory 

(Bejar, 1983; Goodwin, 1999; Mills & Melican, 1988; Reid, 1991; Shepard, 1995; 

Swanson, Dillon, & Ross, 1990; Wang et al., 2001). One element that has impacted rater 
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reliability has been the inability for raters to judge item difficulty. While the literature is 

well documented with the cause(s) of rater inconsistency, the primary focus of this 

research is to explore the resulting impact of rater inconsistency, specifically, as it relates 

to the ability to generalize performance standards. 

Statement of the Problem 

The standard setting process is a time-consuming and expensive endeavor. It 

requires the involvement of a number of professionals both as participants such as subject 

matter experts (SME) as well as those involved in the test development process such as 

psychometricians and workshop facilitators. The standard setting process can also be 

cognitively taxing on participants and this has been a criticism of the Angoff method 

(Lewis, Green, Mitzel, Baum, & Patz, 1998).  

While IRT-based models such as the Bookmark and other variations have been 

created to addresses the deficiencies in the Angoff method, research suggests that these 

new IRT-based methods have inadvertently introduced other flaws.  In a multimethod 

study of standard setting methodologies by Buckendahl, Impara, Giraud, & Irwin (2000), 

the Bookmark did not produce levels of confidence and comfort with the process that 

were very different than the Angoff method. Reckase (2006a) conducted a simulation 

study of standard setting processes which attempted to recover the originating 

performance standard in the simulation model. He studied the impact of rounding error 

on the final estimates of minimal competency for a single rater during a single round of 

estimates. His study simulated data using the Angoff and Bookmark methods, and found 

that error-free conditions during the first round of Bookmark cut scores were statistically 
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lower than the simulated cut scores (Reckase, 2006a). The estimates of the performance 

standard from his research study were “uniformly negatively statistically biased” 

(Reckase, 2006a, p. 14). This trend continued after simulating error into rater’s 

judgments. These results are consistent with other Bookmark research (Green, Trimble, 

& Lewis, 2003; Yin & Schulz, 2005). While the IRT-based standard setting methods do 

use a common scale, they all have a potential issue with reliability. Raters are only given 

one opportunity per round to determine an estimate of minimal competency as they select 

a single place between items rather than setting performance estimates for each 

individual item as in the case of the Angoff method. Shultz (2006) suggested a 

modification to the Bookmark process that involves the selection of a range of items, but 

there is currently little research on this new proposed modification. 

Setting a performance standard with the Angoff method on a smaller sample of 

multiple choice items and accurately applying it to the larger test form may address some 

of these standard setting issues (e.g., cognitively taxing process, high expense, time 

consuming). In fact, it may improve the standard setting process by limiting the number 

of items and the individual rater decisions. It also has the potential to save time and 

money as fewer individual items would be used in the process. Before the 

generalizability process can be applied, however, the various issues and implications 

involved in the process must be evaluated. 

Purpose 

The primary purpose of this research was to evaluate the extent to which a single 

minimal competency estimate derived from a subset of multiple choice items would be 
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able to generalize to the larger item set. In this context there were two primary goals for 

this research endeavor: (1) evaluating the degree to which the characteristics of the two 

item sets and their relationship would impact the ability to generalize minimal 

competency estimates, and (2) evaluating the degree to which the characteristics of the 

standard setting process would impact the ability to generalize minimal competency 

estimates.  

First, the characteristics and the relationship between the two item sets were 

evaluated in terms of their effect on generalizability. This included the distribution of 

item difficulties in the larger item set, the placement of the ‘true’ performance standard, 

and the number of items randomly drawn from the larger item set. Second, the 

characteristics of the standard setting process were evaluated in terms of their effect on 

generalizability, specifically, elements such as the number of raters, the ‘unreliability’ of 

individual raters in terms of the percentage of unreliable raters and their magnitude of 

‘unreliability’, and the influence of group dynamics and discussion. The following 

research questions were of interest: 

Research Questions 

1. To what extent do the characteristics and the relationship between the two item sets 

impact the ability to generalize minimal competency estimates? 

a. To what extent does the distribution of item difficulties in the larger item set 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the placement of the ‘true’ performance standard influence 

the ability to generalize the estimate of minimal competency? 
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c. To what extent does the number of items drawn from the larger item set 

influence the ability to generalize the estimate of minimal competency? 

2. To what extent do the characteristics of the standard setting process impact the ability to 

generalize minimal competency estimates? 

a. To what extent does the number of raters in the standard setting process 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the percentage of ‘unreliable’ raters influence the ability to 

generalize the estimate of minimal competency? 

c. To what extent does the magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters influence the ability to generalize the estimate of minimal 

competency?  

d. To what extent do group dynamics and discussion during the second round of the 

standard setting process influence the ability to generalize the estimate of 

minimal competency? 

Research Hypotheses 

1. The following three research hypotheses were related to the research questions 

involving the extent to which the characteristics and the relationship between the two 

item sets would impact the ability to generalize minimal competency estimates. 

a. The distribution of item difficulties in the larger item set will influence the 

ability to generalize the estimate of minimal competency. Item difficulty 

distributions with a smaller variance in item difficulty parameters will generalize 

better than item difficulty distributions with a larger variance. 
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b. The placement of the ‘true’ performance standard will influence the ability to 

generalize the estimate of minimal competency. A ‘true’ performance standard 

which is closer to the center of the item difficulty distribution will generalize 

better than a placement further away. 

c. The number of items drawn from the larger item set will influence the ability to 

generalize the estimate of minimal competency. The larger the number of items 

drawn the better the generalizability of the estimate of minimal competency. 

2. The following four hypotheses are related to the research questions involving the extent 

to which the characteristics of the standard setting process would impact the ability to 

generalize minimal competency estimates. 

a. The number of raters in the standard setting process will influence the ability to 

generalize the estimate of minimal competency. The larger the number of raters 

involved in the standard setting process the better the generalizability of the 

estimate of minimal competency. 

b. The percentage of ‘unreliable’ raters will influence the ability to generalize the 

estimate of minimal competency. Standard setting situations involving a lower 

percentage of ‘unreliable’ raters will be able to generalize the estimate of 

minimal competency better than those containing a higher number of 

‘unreliable’ raters. 

c. The magnitude of ‘unreliability’ in the designated ‘unreliable’ raters will 

influence the ability to generalize the estimate of minimal competency. Standard 

setting situations involving a low magnitude of ‘unreliability’ in the designated 
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‘unreliable’ raters will be able to generalize the estimate of minimal competency 

better than those containing a high magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters. 

d. The group dynamics and discussion during the second round of the standard 

setting process will influence the ability to generalize the estimate of minimal 

competency. Group dynamics and discussion that influence the raters towards 

the center of the rating distribution will generalize better than group dynamics 

and discussion that influence the raters towards the outside of the rating 

distribution. 

Procedures 

This research simulated the individual item level estimates of minimal 

competency using a Monte Carlo Approach. This approach allowed the control and 

manipulation of research design factors. The Monte Carlo study included seven factors in 

the design. These factors were (a) shape of the distribution of item difficulties in the 

larger item set, (b) the placement of the ‘true’ performance standard, (c) the number of 

items randomly drawn from the larger item set, (d) the number of raters in the standard 

setting process, (e) the percentage of ‘unreliable’ raters, (f) the magnitude of 

‘unreliability’ in the designated ‘unreliable’ raters, and (g) the influence of group 

dynamics and discussion during the second round of the standard setting process. The 

number of levels for each factor will be described in Chapter Three: Methods. 

The ability to ‘adequately’ generalize the performance standard was evaluated in 

terms of the differences between the performance standard derived with the larger item 
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set and the performance standard derived with the smaller subset of multiple choice 

items. The difference between the originating performance standard and the performance 

standard derived with the smaller subset of items was also reviewed. The simulation 

results were evaluated in terms of the location of the performance standard (bias) and the 

variability of the performance standard (mean absolute deviation, root mean square 

error).  

Limitations 

Based on the design of the study and the level of rater subjectivity involved in the 

standard setting process, there are a number of limitations that must be considered when 

evaluating the final results of this study. While this study has contained a number of 

factors to simulate the standard setting process, additional factors affecting the 

subjectiveness of individual raters such as content biases, knowledge of minimal 

competency, and fatigue may play a role in determining the final passing standard. These 

issues would likely affect the other raters in the standard setting process as well. Another 

inherent limitation of the study is the number of levels within each factor. These levels 

were selected to provide a sense of the impact of each factor.  They were not, however, 

intended to be an exhaustive representation of all the possible levels within each factor. 

Importance of Study 

Many factors must be evaluated before concluding the quality of a standard 

setting process. While standard setting issues such as the dependability and replicability 

continue to populate the literature, other important issues have been underrepresented. 

The issue of generalizability is one such issue, and it is important for two reasons. First, it 
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has the potential to improve the quality of the process by limiting the number of items 

and individual rater decisions. By reducing the number of items that a rater needs to 

review, the quality of their ratings might improve as the raters are “less fatigued” and 

have “more time” to review the smaller dataset (Ferdous & Plake, 2005, p. 186). Second, 

it has the potential to save time and money for the presenting agency as well as the raters, 

who are generally practitioners in the profession. This savings may then be spent on 

improving other areas of the test development process. Reducing the time it takes to 

conduct the standard setting process may also result in a different class of more qualified 

raters who may have been unable to otherwise participate due to time constraints. In 

general, the ability to accurately generalize performance standards may have important 

implications for improving the quality of the standard setting process and the overall 

validity of the examination. 

Definitions 

Angoff Method. A popular method of standard setting proposed by William 

Angoff in 1971. While Angoff did not originally propose the idea of estimating the 

proportion of examinees that correctly respond to an item (see Lorge & Kruglov, 1953), 

his original idea (or versions of it) is still one of the most popular models of standard 

setting today (Impara, 1995; Kane, 1995; Plake, 1998). The popularity of the Angoff 

method has decreased slightly over recent years due to the popularity of the IRT-based 

methods. 

Angoff Values. The proportion or number (depending on methodology) of 

minimally competent examinees predicted to correctly respond to a given item. The 
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individual Angoff values are usually averaged across raters and added across items to 

produce a minimum passing score. 

Bookmark Method. The IRT-based Bookmark method (Lewis, Mitzel, & Green, 

1996) developed by CTB/McGraw Hill was specifically designed to address the 

deficiency in the Angoff Method (Horn, Ramos, Blumer, & Maduas, 2000). It is one of a 

family of IRT-based rational methods, which include the Bookmark method (Lewis et al., 

1996), the Item Mapping method (Wang et al., 2001), and the Mapmark method (Schultz 

& Mitzel, 2005). The Bookmark method was intended to work well with multiple item 

types (selected and constructed response) and simplify the cognitive task for raters 

(Lewis et al., 1998). It is a multi-round process, similar to the Angoff method. However, 

instead of presenting the items in administration order, the Bookmark method uses IRT 

b-paramters to order the items according to difficultly in an Ordered Item Booklet (OIB) 

from easiest to hardest. The Bookmark method only requires that the rater select the 

specific location in the OIB that separates one level of ability from another (Horn et al., 

2000) as opposed to the item-by-item review as in the case of the Angoff method.  

Facilitator. The person or persons who conduct the standard setting process.  

These test development professionals are often psychometricians. 

Minimally Competent Candidate (MCC). A candidate or test taker that possesses 

a minimal level of acceptable performance. It is this individual who is conceptualized by 

standard setting participants when evaluating test content. 

Performance Standard. The performance standard is the “conceptual version of 

the desired level of competence” (Kane, 1994, p. 426). The passing score of an 
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examination can be expressed as the “operational version” (Kane, 1994). The 

performance standard has also been referred to as the minimal performance level (MPL). 

Standard Setting.  A process for determining a “passing score” or minimal 

acceptable level of performance (Cizek, 1996).   

Subject Matter Experts (SME).  Individuals who have an expertise in a given 

subject area and are “qualified to make judgments” concerning the content (Cizek, 1996, 

p. 22). SMEs participate in standard setting workshops and judge items for minimal 

performance levels.  It is also preferred that SMEs are familiar with one or more 

individuals who possess a minimal level of acceptable performance. Subject matter 

experts are also referred to as raters, judges, or standard setting participants. 

Theta-cut or thetamc. The performance standard represented on a theta scale. A 

theta represents an unobservable construct (or latent variable) being measured by a scale. 

The theta scale is generally normally distributed, N(0,1), and estimated from item 

responses given to test items that have been previously calibrated by an IRT model. The 

thetamc is calculated using a procedure designed to link item ratings and estimates of 

minimal competency with a common scale (Coraggio, 2005).  
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Chapter Two:  

Literature Review 

 

Introduction 

The primary purpose of this research was to evaluate the extent to which a single 

minimal competency estimate from a subset of multiple choice items could be 

generalized to a larger set. Specifically, the two primary goals in this research endeavor 

were (1) evaluating the degree to which the characteristics of the two item sets and their 

relationship impact the ability to generalize minimal competency estimates, and (2) 

evaluating the degree to which the characteristics of the standard setting process impact 

the ability to generalize minimal competency estimates. The literature review is separated 

into three major sections: types of standard setting methods, issues within the standard 

setting process, and previous research studies in the areas of standard setting simulation 

and generalizing performance standards. 

Standard Setting Methodology 

As previously alluded to in the introduction of the paper, measuring and 

evaluating change through assessment is now the norm in our society, not the exception. 

Test developers and psychometricians are now held to tight levels of accountability and 

legal defensibility. Every stage of the test development process is evaluated for its 

contribution to the reliability of the resulting scores and the validity of the interpretation 

of those scores. Of all the stages, the standard setting process has received the most 
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attention in the literature (Berk, 1986). It has been documented that the standard setting 

process is one of the most difficult steps (Wang et al., 2001) and may also be one of the 

most unreliable (Jaeger, 1989b). 

While some standards are still set unsystematically without consideration of a 

particular criterion (Berk, 1986), such as setting an arbitrary predetermined passing score 

(e.g., score of 70) or establishing a passing standard with a relative standard (quota or an 

examinee’s normative performance level) (Jaeger, 1989a), the current accepted standard 

setting practices involve the use of an absolute or criterion-referenced process to evaluate 

the examination items and set an appropriate passing standard. Reckase (2005) stated that 

“a standard setting method should be able to recover the intended standard for a panelist 

who thoroughly understands the functioning of the test items and the standard setting 

process, and who makes judgments without error” (p. 1). Some researchers, however, do 

not share in Reckase’s perspective and warn that a “true” standard or a “best” standard 

setting practice may not actually exist (Wang et al., 2003). 

Almost from the introduction of standard setting (Lorge & Kruglov, 1953), 

controversy has surrounded the process. Accusations relating to fairness and objectivity 

have constantly clouded the standard setting landscape, regardless of the imposed 

methodology. Glass (1978) conducted an extensive review of the various standard setting 

methods and determined that the standard setting processes were either arbitrary or 

derived from arbitrary premises. Jaeger (1989b) and Mehrens (1995) found that it was 

unlikely for two different standard setting methods to result in comparable standards. 

Behuniak, Archambault, and Gable (1982), after researching two popular standard setting 
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methods of the time (Angoff and Nedelsky), had similar results determining that different 

standard setting methods produce cut scores that are “statistically and practically 

different” and even groups of raters employing the same standard setting method should 

not be expected to set similar passing standards (p. 254).  

Current Standard Setting Methods 

In 1986, Berk claimed that there were more than 38 different methods developed 

to estimate passing standards; by 2003, Wang et al. claimed that there were more than 50 

different standard setting procedures (For a detailed description of various methods see 

Zieky, 2001). Yet, with all the methods available, which methods provide the best 

results? “The most consistent finding from the research literature on standard setting is 

that different methods lead to different results” (National Academy of Education, 1993, 

p. 24).   

Due to their increased psychometric rigor and legal defensibility, the absolute or 

criterion-based methods are currently the most widely applied standard setting methods. 

Three of the most popular types of absolute or criterion-based methods include the 

classical rational methods, based on evaluation of test content such as the Nedelsky 

(1954) and the Angoff (1971) method (or modified variations); the IRT-based rational 

methods such as the Bookmark method (Lewis et al., 1996), Item Mapping method 

(Wang et al., 2001), and Mapmark method (Schultz & Mitzel, 2005); and the empirical 

methods, based on the examinee distribution on some external criterion such as the 

Comparison Groups method, (Livingston & Zieky, 1982) and the Borderline Groups 

method (Livingston & Zieky, 1982). Due to the lack of an existing external criterion in 
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most instances, the focus of this research will be on one of the classical rational methods. 

Classical Rational Methods 

 The classical rational methods rely on the expert judgment of raters. These raters 

conduct a detailed analysis of each item on the examination in order to establish the 

minimal performance standard (Muijtjens, Kramer, Kaufman, & Van der Vleuten. 2003). 

Nedelsky. The Nedelsky method has declined in popularity since the introduction 

of the IRT-based standard setting methods.  It focuses on the minimally competent 

candidate and requires a review of every item on the examination, similar to the Angoff 

method. Rather than estimating a probability based on the overall difficulty of the item, 

the rater instead focuses on the individual item’s multiple choice options and eliminates 

those that a minimally competent candidate would recognize as incorrect. An individual 

item probability is then determined from the remaining items (e.g., two remaining options 

would result in a .50 probability). The individual item probabilities are then averaged 

across raters and then summed across items to determine the passing standard. This 

process is sometimes conducted over multiple rounds. 

 The Nedelsky method, while less cognitively taxing for raters than other methods, 

does have some inherent weaknesses. It results in a limited number of item probabilities 

based on the number of multiple choice options. This may not reflect normal test taking 

behavior by a minimally competent candidate. It is also limited to use with multiple 

choice style examinations. In comparisons between the Nedelsky and Angoff methods, 

The Angoff method produced less variability among individual rater estimates (Brennan 

& Lockwood, 1979).  



www.manaraa.com

  
 19 

Angoff and Modified Angoff Method. Angoff’s method is still one of the most 

popular models of standard setting today (Impara, 1995; Kane, 1995; Plake, 1998), 

though the popularity of the Angoff method has decreased in recent years due to the 

popularity of the IRT-based methods. 

Angoff proposed his idea for standard setting in a book chapter entitled, Educational 

Measurement. It is important to note that Angoff “unfailingly attributed” the development of 

his standard setting method to Ledyard Tucker even though the method and its modified 

versions are given only his namesake (Smith & Smith, 1988, p. 259). An original description 

of the Angoff procedure is reproduced here (Angoff, 1971, p. 515). 

A systematic process for deciding on the minimum raw scores for passing 

and honors might be developed as follows: Keeping the hypothetical 

‘minimally acceptable person’ in mind, one could go through the test item by 

item and decide whether such a person could answer correctly each item 

answered correctly by the hypothesized person and a score of zero is given 

for each item answered incorrectly by that person, the sum of the item scores 

will equal the raw score earned by the ‘minimally acceptable person.’ A 

similar procedure could be followed for the hypothetical ‘lowest honors 

person.’ 

 This original Angoff method has been described as the Angoff Yes/No 

method. While it has been used with some success (see Impara & Plake, 1997), it is 

not as popular as his next suggestion. In a footnote on that same page, Angoff 

described a variation to the procedure that became known as the Modified-Angoff 
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Approach to standard setting (Reckase, 2000). Below, the footnote from that page is 

reproduced (Angoff, 1971, p. 515). 

A slight variation of this procedure is to ask each judge to state the 

probability that the ‘minimally acceptable person’ would answer each item 

correctly. In effect, the judges would think of a number of minimally 

acceptable persons, instead of only one such person, and would estimate the 

proportion of minimally acceptable persons who would answer each item 

correctly. The sum of these probabilities, or proportions, would then 

represent the minimally acceptable score. 

Impara and Plake (1997) conducted a study of both versions that Angoff 

originally proposed. Their results indicated that the Angoff Yes/No version, while not as 

popular, produced similar cut score results, was easier to understand for raters, and was 

easier to use (Impara & Plake, 1997).  

Angoff provided no rationale for either of his standard setting methods (Impara & 

Plake, 1997) and this omission may have led to the many variations of his method that 

exist today. The Angoff method has been continually adjusted and modified during its 

history. In fact, Reckase (2000) stated that “there is no consensus on the definition for the 

modified Angoff process” (p. 3).  

As shown from the passages, the Angoff models rely on the opinion of raters who 

rate each item according to the probability that a “minimally proficient” candidate will 

answer a specific item correctly (Behuniak et al., 1982). This can be seen as an advantage 

or as a weakness in this particular method. The Angoff method consists of an item-by-
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item rating method similar to the Nedelsky method, but instead of eliminating options, 

the Angoff method requires participants to indicate the proportion of minimally qualified 

students who would answer each item correctly based on the difficulty of the item 

(Reckase, 2000). As with the Nedelsky method, the item ratings are then averaged across 

raters and combined to create an overall passing standard. The Angoff method generally 

involves a multi-round process that involves individual ratings as well as group 

discussion to achieve the final passing standard. 

Regardless of the modification, the Angoff method relies heavily on the opinion of 

individuals and has an inherent aspect of subjectivity that can be of concern when 

determining an appropriate standard. In fact, it has been described as “fundamentally 

flawed” in an evaluation of the standard setting process used with the National Assessment 

of Educational Progress (Pellegrino, Jones, & Mitchell, 1999). IRT-based models were 

created to address the limitations in the Angoff-based standard setting models. 

IRT-Based Rational Methods 

In 1982, van der Linden suggested that item response theory (IRT) may be useful in 

the standard setting process. Yet, limitations with computer technology at the time may have 

limited the usefulness of IRT during the standard setting workshop process. Modern 

computer processing speeds and advancement in software have allowed the development of 

IRT-based standard setting methods designed to improve on the weaknesses in the Angoff 

method. The IRT-based Bookmark method was specifically designed to address the item-by-

item review of the Angoff method (Horn et al., 2000).  
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Bookmark Method. The Bookmark method was intended to work well with multiple 

item types (selected and constructed response) and simplify the cognitive task for raters 

(Lewis et al., 1998). It is a multi-round process, similar to the Angoff and Nedelsky methods. 

However, instead of presenting the items in the order of administration, the Bookmark 

method uses IRT parameters to order the items according to difficultly from easiest to 

hardest in an Ordered Item Booklet (OIB). The Bookmark method only requires that the rater 

select the specific location in the OIB that separates one ability level from another (Horn et 

al., 2000) as opposed to the item-by-item review as in the case of the Angoff method. 

Specifically, the rater is to select the item location for which a minimally competent 

examinee is expected to have mastered the items below, and conversely, not have mastered 

the items above (Karantonis & Sireci, 2006). This location is based on a response probability 

(RP). The RP is the location selected by the standard setting participant where the examinee 

“has a .67 (2/3) probability of success with guessing factored out” (Lewis et al., 1998, p. 3). 

By selecting a location where the Bookmark is at the “furthest most item” where this RP is 

true, a unique location on the ability scale can be estimated and a cut score established (Lee 

& Lewis, 2001, p. 2). The RP of .67 has been traditionally used due to its ease of 

understanding for participants (Williams & Schultz, 2005), and its maximizing of the 

information function in the 3PL IRT model (Huynh, 2000).  

The Bookmark method has become increasingly popular for its simplicity. Raters 

only need to focus on the performance of the “barely proficient” examinee without 

concern in estimating item difficulty, and raters can perform the required tasks in a much 

shorter amount of time (Buckendahl, Impara, Giraud, & Irwin, 2000). The Bookmark 
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method has rapidly grown in popularity from use in 18 states in 1996 (Lee & Lewis, 

2001) to use in 31 states in 2005 (Perie, 2005).  

In a study comparing the Bookmark and the Angoff methods, Buckendahl et al. 

(2000) found that while the two methods produced a similar cut score and similar levels 

of confidence and comfort with the process, the Bookmark method had a lower standard 

deviation. While they did not conduct a statistical significance test on the differences, 

they did suggest that this lower standard deviation would indicate a higher level of inter-

rater agreement to a policy making body (Buckendahl et al., 2000). One element that may 

have impacted their results was that their study used Classical Test Theory p-values to 

create the OIB as opposed to IRT parameters. Other multiple method studies indicate that 

the Bookmark method consistently produces the lowest cut score among standard setting 

methods (Green et al., 2003; Yin & Schultz, 2005). 

Bookmark Variations. One variation of the Bookmark method is the Item 

Mapping Method (Wang et al., 2001). In this method, items are sorted according to 

difficulty (using the IRT b-paramters) based on the Rasch IRT model. A rater examines 

the items and determines which items a minimally competent candidate would have a .50 

probability of answering correctly as opposed to the .67 response probability associated 

with the Bookmark method.  

Another very recent variation of the Bookmark method is the Mapmark method 

(Schultz & Mitzel, 2005) developed by ACT, Inc. It was recently implemented on the 

Grade 12 National Assessment of Educational Progress (NAEP) Math test, perhaps in 

response to the reported “flaws” in the Angoff method. The Mapmark uses “item maps” 
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(graphical relationships of the items to the proficiency distribution, arranged by content 

domains) and content domain scores to assist in “significant” discussion about what 

knowledge, skills, and abilities (KSAs) are being measured (Karantonis & Sireci, 2006). 

Due to its recent development and single implementation at this point, research on the 

Mapmark method has been limited.  

Yin and Schultz (2005) conducted a study and compared the Mapmark method 

with the Angoff-based method. Their results suggest that the Mapmark cut scores are 

lower than those from the Angoff-based method. These results are similar to research 

findings from the Bookmark method (Green et al., 2003; Yin & Schultz, 2005). Yin and 

Schultz (2005) also discovered that the individual rater cut scores from the Mapmark 

method were not normally distributed and contained more extreme scores. In fact, due to 

the differences, the median cut score has been used as the final performance standard as 

opposed to the mean cut score (Yin & Schultz, 2005). One weakness of all the IRT-based 

standard setting methods is that they require large amounts of prior performance data in 

order to calibrate the items and create the OIB. The specific amount of required prior 

performance data depends on the IRT model employed (e.g., 3PL vs. Rasch).  

Standard Setting Implications 

Even if the standard setting process has been properly conducted, the resulting 

passing standard may have an overall impact (pass/fail rate) that is inconsistent with the 

expectations of the raters and/or the policy makers (Buckendahl et al., 2000). It is the 

policy makers, not the raters, who determine the final performance standard (Shepard, 

1995). It is critical that policy makers take into account “uncertainty” associated with cut 
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scores before adopting a new performance standard (Lewis, 1997).   

Often these policy makers may change the resulting cut score only a few raw 

score points. While this may seem trivial, a change of a few raw score points may have 

significant implications. For example, a change of two raw-score points on a statewide 

administration of the National Teaching Examination (NTE) mathematics subtest in April 

1983 would have resulted in an additional 13% of examinees not passing the assessment 

(Busch & Jaeger, 1990). Another consideration is the impact (pass/fail rate) on minority 

groups generally referred to as differential selection. Testing can result in differential 

selection rates from groups with different group means (Stark, Chernyshenko, & 

Drasgow, 2004). Setting a high cut score can result in an adverse impact on minority 

groups and the resulting underselection can result in “contentions” of discrimination 

(Stark et al., 2004, p. 497).  

From a measurement perspective, this issue of differential selection becomes one 

of discerning between differences due to ability (referred to as “impact” in the 

measurement literature) and differences due to some assessment measurement bias. The 

discussion of measurement bias and the differences between impact and bias are outside 

the scope of this particular paper (for a detailed discussion on measurement bias and 

impact, see Stark et al., 2004).  

From a legal perspective, the issue of differential selection is the perception of 

discrimination. This legal discussion specifically addresses the use of performance 

standards in certification and licensure applications.  

 



www.manaraa.com

  
 26 

The federal Uniform Guidelines on Employee Selection Procedures state the 

following: 

A selection rate for any race, sex, or ethnic group which is less than four-

fifths (4/5) (or eighty percent) of the rate for the group with the highest 

rate will generally be regarded by the Federal enforcement agencies as 

evidence of adverse impact, while a rate greater than four-fifths rate will 

generally not be regarded by Federal enforcement agencies as evidence of 

adverse impact (Equal Employment Opportunity Commission, 1978). 

The 4/5th rule, as it is commonly known, basically states that the proportion of 

examinees selected from a minority (focal) group at the selected cut score when 

compared with the proportions of examinees selected from a majority (reference) group 

at the selected cut score can not exceed a ratio of .80. This rule places a significant 

amount of legal burden and potential liability on the policy makers in the fields of 

licensing and certification in terms of the location of the final performance standard. 

While there was no direct evidence in the literature of this rule currently being applied to 

the performance standards in educational testing, it might only be a matter of time in this 

environment of ever increasing accountability. 

Aside from this issue of differential selection, policy makers are also very 

concerned with the perceptions of their stakeholders: specifically, the taxpayers in the 

case of educational testing, and licensees in the case of accreditation testing. The 

resulting performance standard may be “impractical,” providing a performance standard 

that is set too high (low pass rate) or too low (high pass rate). This may bring the validity 
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of the examination program in to question. 

Issues in the Standard Setting Process 

Kane (1994, 2001) proposed three types of validity evidence to be used for 

validating performance standards. They were procedural, internal, and external. 

Procedural validity evidence focuses on the appropriateness of procedures and quality of 

implementation (Kane, 1994). Internal validity evidence focuses on the ability of raters to 

translate the performance standard into a passing score (Kane, 1994). He suggested 

examining this evidence empirically through the standard error of the cut score. External 

validity evidence involves external comparisons such as consistency of cut scores across 

different methods or congruence with external examinee classifications (Kane, 1994). 

Kane’s validity model claims to provide a way to evaluate the evidence of 

validity in the standard setting process, but it focuses primarily on the consistency and 

reliability of the process with only limited consideration to whether the resulting 

performance standard is truly valid.  

Rater Reliability  

Individual rater differences were defined in the literature as a threat to standard 

setting validity (Sato 1975; van der Linden, 1982; Jaeger, 1988). In discussing these 

differences, van der Linden (1982) coined the term ‘intrajudge inconsistency’ when 

referring to individual rater error. This term specifically refers to the inconsistency 

between item ratings and their associated difficulty (Plake, Melican, & Mills, 1991). For 

example, a rater assigns a low probability of success to an easy item and a high 

probability of success to a hard item. Engelhard and Cramer (1992) concluded that most 
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of the variation was related to judge inconsistency and this related directly to the 

inconsistency within the ratings of specific judges. Their research raised a concern about 

the subjectivity of specific judges (Engelhard & Cramer, 1992). Berk (1996) suggested 

using intrajudge reliability across consecutive rounds as one criterion for establishing the 

quality of the standard setting process. Berk also suggested evaluating rater variance in 

the final cut score as another criterion of success (Berk, 1996).  

Another approach to identifying rater unreliability was used by Plake and Impara 

(2001). They sought to understand how well the raters could estimate the item-level 

performance of examinees at the established minimal performance standard. Their study 

compared the raters’ estimation of the item-level minimal passing standard with the item-

level performance of actual candidates who had scores close to the raters’ overall 

estimation of the minimal performance standard. Their research indicates that the average 

difference between actual and anticipated performance was -.002 with a standard 

deviation of .09 (Plake & Impara, 2001). One limitation of this approach is that actual 

performance values are used as opposed to a ‘true’ value of the minimal performance 

standard, which is usually never known. Reckase (2006a) in his simulation study used 

these estimates to postulate that raters have an error distribution with a standard deviation 

of .1. He used this assumption to stimulate rater error in his simulation model. 

Operationally, he proposed that the rater had a 95% chance of estimating the probability 

of a correct response within .2 of the intended performance standard or cutscore 

(Reckase, 2006a). In other words, if the estimated probability of a correct response for a 

given item on the IRT theta scale was .7 based on a true performance standard, then the 
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raters estimate would be between .5 and .9 95% of the time.  

One element that has impacted rater reliability (or rater unreliability) has been the 

inability for raters to judge individual item difficulty. In various research studies, the item 

difficulty estimates from raters have been at times inaccurate, inconsistent, and 

contradictory (Bejar, 1983; Goodwin, 1999; Mills & Melican, 1988; Reid, 1991; 

Shepard, 1995; Swanson et al., 1990; Wang et al., 2001). While raters are able to 

distinguish between which items were easy and which items were hard, they have had 

difficulty correctly estimating item difficulty (Shepard, 1995). 

This is especially true of estimating item difficulty for minimally competent 

examinees and this has resulted in either overestimations of minimally competent 

performance or underestimations of minimally competent performance depending on the 

items on the examination (Shepard, 1995). One of the main concerns, especially in the 

Angoff model, has been the ability of raters to “predict” the performance of minimally 

competent candidates (Irwin, Plake, & Impara, 2000). Raters tend to only think of 

average examinees as opposed to those that are minimally competent (Bowers & 

Shindoll, 1989). Shepard (1995) felt raters were essentially unable to estimate the 

response of the minimally competent candidates. Impara and Plake (1997) conducted a 

study of two different versions of the Angoff method. Their research suggests that raters 

found the conceptualization of a ‘single’ minimally competent examinee easier to 

comprehend than imagining a ‘group’ of minimally competent examinees as is prescribed 

in the method.  
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Another issue may be a rater’s preconceived perceptions of impact prior to the 

workshop. Buckendahl et al. (2000) examined the consequences of a rater’s advanced 

estimates of impact. They first asked raters their perceptions of a passing rate and then 

provided passing rate information from previous administrations. What they found was 

limited evidence to suggest that these early estimates may influence the change and 

directionality of ratings between rounds (Buckendahl et al., 2000). Jaeger (1982) found 

evidence to suggest that a rater’s background may also have some influence on rater 

consistency: specifically, the relationship between the rater’s background and specific 

content on the examination (Plake et al., 1991).  

Incorporating IRT into the standard setting process may improve the precision of 

the process by assisting in examining rater variability (van der Linden, 1982). IRT can be 

used to set estimates of true score or expected observed score for minimally competent 

examinees (van der Linden, 1982). IRT can also be used to identify the variability of item 

difficultly estimates for individual raters.  Raters with extreme ratings and raters who 

were inconsistent in terms of their definition of minimal competency based on their item 

ratings can be identified using IRT (Kane, 1987).  

Influence of Group Dynamics 

Variability among group participants may account for differences in standard 

setting results. Livingston (1995) in a study of the Angoff method reported a likely 

group-influenced biasing effect of regression to the mean. Hertz and Chin (2002), after 

studying group variability, proposed that standard setting studies should focus on the 

interaction among groups as well as on group instruction (training) and individual rater 
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differences. They proposed that the best model for standard setting should be one that 

minimizes the effect of the group and simplifies the process (Hertz & Chin, 2002). One 

unique study by Wiley and Guille (2002) looked at an occasion effect for participants that 

established their judgments individually without any type of group interaction. While the 

mean difference between the collaborative group and the “at-home” raters was only 1.20 

points, the “at-home” ratings did have more variability and resulted in a slight item-

occasion interaction. The design of the study may also have tempered the results. “At-

home” raters were experienced with the Angoff standard setting process and had access 

to 13 anchor items that had previously been rated. While additional research is needed on 

the subject of group influence, this study suggests an impact of group interaction on the 

resulting performance standard. Group variability is likely influenced by the social 

interactions during the standard setting discussion process. 

Most standard setting methods include some type of social interaction among 

participants, with many of the models requiring multiple rounds of discussion before the 

final minimum passing score is determined. Multiple consecutive rounds of ratings are 

designed to “foster convergence of views” as the workshop progresses (Karantonis & 

Sireci, 2006). Some researchers even suggest providing normative information on 

examinee test performance to assist raters in adjusting judgments between rounds (Cizek, 

1996). Research on this issue suggests that providing this information to raters will 

produce “small and inconsistent” changes in the overall mean performance standard, but 

will result in lower rater variability (Busch & Jaeger, 1990, p. 148). Rater cut score 

variability has been used as criterion for determining the quality of the standard setting 
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process (Berk, 1996).  

One relevant factor that may provide some of the inconsistencies in standard 

setting results is social influences (Hertz & Chinn, 2002). Group discussion and 

interaction can dramatically change individual perceptions about the difficulty of an item, 

and some individuals are more prone than others to change their perceptions. Some raters 

have reported feeling pressured to change their original ratings (McGinty, 2005). In fact, 

the opinion of the group is on average more extreme after the group discussion, than it is 

before the group discussion (Fitzpatrick, 1989). The minority position also may have a 

difficult time convincing the majority position during a discussion. The “most likely 

result” is for the minority group to give in to the majority position (Hertz & Chinn, 2002, 

p. 6). Group discussion has resulted in lower rating variability, and this lower variability 

has been traditionally used by practitioners as one measure of standard setting quality. 

Raters in the same group employing the same standard setting method had ratings that 

were more similar than raters in different groups employing the same method (Behuniak 

et al, 1982). One meta-analysis on different variations of the Angoff method resulted in 

higher degree of consensus and a higher overall minimal passing standard when 

participants focus on a common definition of minimal competency and discuss their 

individual estimates as a group (Hurtz & Auerbach, 2003). This higher degree of 

consensus may be due to the influence of the dominant interactions by the majority 

group. Improving the reliability does not necessarily imply improving the validity of the 

passing standard. An issue even bigger than the reliability of the standard setting process, 

may be the validity (McGinty, 2005). Researchers tend to focus more on reliability 
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because it can be “more easily” established and researchers are more “comfortable” with 

the idea of replicability. 

The literature on standard setting has presented several suggestions for improving 

the reliability and replicability of the standard setting process. These suggestions include 

selecting qualified raters, using proper rater training on procedures and providing a clear 

definition of minimal candidate competency (Mills, Melican, & Ahluwalia, 1991; Plake 

et al., 1991); providing preexisting item performance data (Plake et al., 1991; Kane, 

1994); and ensuring that judges have an expertise in their domain (Jaeger, 1991). Many 

of these “suggestions,” however, do not guarantee valid results (McGinty, 2005).  

McGinty (2005) suggests that while convergence is often the goal of standard 

setting processes, it may have two major flaws. First, the resulting convergence may be 

“artificially” derived and, second, the resulting convergence may be the result of 

“undesirable” influences. Berk (1995) discussed the subjectivity and imprecision 

involved in the process, while van der Linden (1995) emphasized “feelings of 

arbitrariness” (p. 100). Overall, there have been a limited number of research studies 

attempting to examine the cognitive process of standard setting participants (Ferdous & 

Plake, 2005).  

Participant Cognitive Processes  

Most judgmental standard setting methods are cognitively taxing for raters. Each 

method requires raters to develop some type of hypothetical construct related to the 

content and the minimally competent examinee (Demauro, 2003). This hypothetical 

construct consists of either a knowledge and skills domain with criteria for inclusion or a 
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body of knowledge and skills within a hypothetical minimally competent examinee 

(Demauro, 2003). 

Skorupski and Hambleton (2005) used a variety of questionnaires at various times 

during the standard setting process to examine what raters were thinking when they were 

participating in standard setting studies. Based on the results of the study, raters reported 

that they felt rushed and they also seemed to report more confidence and understanding 

in the standard setting process than they actually had (Skorupski & Hambleton, 2005). 

The study reported that the raters arrived at the standard setting workshop with different 

ideas about why they were there, the importance of the process, and the definitions of the 

performance level descriptors. 

Giraud, Impara, and Plake (2005) conducted a study examining teachers’ 

conceptions of the target examinee and found that teachers had a similar characterization 

of minimally competent students even in different workshops, with different content, 

different grade levels, and different school districts. This suggested that some outside 

influence was affecting the teachers’ perceptions of minimal competence. The authors 

felt this result was due to either a common idea of competency across teachers or some 

aspect of the workshop process (Giraud et al., 2005). 

One issue repeatedly referenced in the literature is the ‘basis’ for the judgment of 

minimal competency. Even workshop facilitators have been inconsistent when 

recommending whether raters should base their ratings on “how minimally competent 

examinees should perform” rather than “how they could perform” (McGinty, 2005). 

Angoff evidently made no distinction in how raters should address this perception when 
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using his own method (Zieky, 1995). Ambiguity in this interpretation could have 

negative implications for the resulting performance standard. Raters generally believe 

that should represents a higher standard than would (Impara & Plake, 1997). This issue 

while important to the process of standard setting has been mentioned very infrequently 

in the literature.  

McGinty (2005), after conducting a qualitative study on the perceptions of 

standard setting participants, described the entire standard setting process as “elusive and 

fraught with subjectivity” (p. 270). She continued by describing the process as including 

many features that are not “amenable to psychometric analysis” (p. 270). The findings 

from her were presented as three primary themes: 

1. Panelists had difficulty with the Angoff method, and the difficulty lay 

primarily in the confusion between prediction and value judgment, 

2. Panelists felt a tension between the desire to set high standards and the 

desire to be viewed by the public as doing a good job, and 

3. Many panelists were skeptical about how their input would actually be 

used (McGinty, 2005, p. 278). 

The validity evidence in the standard setting process should be focused on each 

stage of the process: inputs, process, outputs, and consequences (McGinty, 2005). 

McGinty (2005) suggests that most “direct and compelling evidence” of validity in the 

standard setting process would be associated with consequences of the process (p. 271). 
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Identifying Sources of Error 

Kane (1987) recommended a study that would identify variability due to different 

sources of variance such as item variance and rating variance. Lee and Lewis (2001) 

conducted a generalizability study using the Bookmark method. Their results suggest that 

small group and participants effects are ‘non-negligible’ and, that for a fixed number of 

raters, increasing the number of small groups will likely increase the reliability of cut 

scores (Lee & Lewis, 2001). Few studies have also been conducted that examine the 

issues related to the standard error of the cut score. These include studies of the Angoff 

and Nedelsky methods (Brennan & Lockwood, 1980; Kane & Wilson, 1984) as well as a 

generalizability based study of the Bookmark method (Lee & Lewis, 2001). 

Previous Simulation and Generalizability Studies 

The existing literature on standard setting simulations and the generalizability of 

performance standards is sparse. This may be the result of the subjective nature of the 

standard setting process.   

Previous Simulation Studies 

Reckase has been more involved than most researchers in the area of standard 

setting simulation. He published an article in Educational Measurement: Issues and 

Practice that generated some attention (Reckase, 2006a). The editor of the journal issue 

referred to Reckase’s article as “generating controversy” and suggested that researchers 

may be moving towards a “unifying theory” of standard setting that addresses “social 

interaction processes” and “social psychology findings” on human behavior and decision-

making (Ferrara, 2006, p. 2). Reckase’s (2006a) study simulated data using the Angoff 
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and Bookmark methods, and found that error-free conditions during the first round of 

Bookmark cut scores were statistically lower than the simulated cut scores (Reckase, 

2006a). This trend continued after simulating error into rater’s judgments. These results 

are consistent with other Bookmark research (Green et al., 2003; Yin & Schulz, 2005). 

As one might expect, Reckase’s article resulted in immediate commentary. 

Schultz (2006) published an article in the very next issue of Educational Measurement: 

Issues and Practice. Reckase (2006b) also published a rejoinder in that same issue as 

well. Reckase’s original article proposed a conceptual framework that he described as a 

“psychometric theory of standard setting” (Reckase, 2006a, p. 4). He suggested that this 

theory was closely related to the true score theory used in psychometrics. That is to say, a 

“standard setting method should be able to recover an intended cut score (ICS)” 

(Reckase, 2006a, p. 4). He proposed three criteria for evaluating standard setting 

procedures: (1) whether the ICS could be recovered if there was no error in the process, 

(2) whether the process used for estimating the cut score was statistically unbiased, and 

(3) whether the resulting estimates of the cut scores have small standard errors (Reckase, 

2006a). One issue in the research design was that only the initial round of ratings for a 

single rater was simulated. This study did not take in consideration any social 

interactions between participants that generally occur after the first round. It was this 

issue along with the ability of the simulations to represent “actual outcomes” of 

Bookmark and Angoff procedures that was the focus of Schultz’s (2006) commentary. In 

his response, Shultz proposed a different modified version of the Bookmark procedure 

that uses multiple selections of items by raters (Shultz, 2006). In simulation, this 
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modification showed “considerable promise” over the traditional Bookmark procedure 

(Reckase, 2006b). Shultz also proposed a different rater error model for the Angoff 

method that involved uniform regression across the scale to some fixed value (Shultz, 

2006). Schultz proposed that this fixed value might be 0.5 based on his review of 

previous standard setting studies (see Shepard, 1995; Heldsinger, Humphry, & Andrich, 

2005). Reckase (2006b) in his rejoinder, proposed the following adjustment formula to 

address this potential uniform regression: 

rating = .5 + (rating - .5) *.8 

This adjustment when simulated may suggest an initial overestimation of 

probabilities in the early rounds of the standard setting process and a subsequent 

downward adjustment as raters get feedback in later rounds of the process.  

Previous Studies of Performance Standard Generalizability 

Sireci et al. (2000) conducted a study involving the setting of performance 

standards using only partial item sets. The study evaluated the differences between three 

different Angoff based methods of standard setting that were used to set standards for 

Computer Adaptive Testing (CAT) items (Sireci et al., 2000). The three models included 

a more traditional modified Angoff method along with two newer Angoff based methods 

designed with time-saving modifications.  In the world of Computer Adaptive Testing 

(CAT), the available set of items is the entire bank as opposed to a single set of 

examination items. Generalizability of performance standards can be very important as it 

relates to saving time and expense in the standard setting process. One additional 

criterion of their study was to evaluate the consistency of derived cut scores over the item 
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subsets. The item subsets were evaluated as thirds of the total set (112 items). The results 

of the study suggest that two of the three subsets or 2/3 of the total items produced 

standard setting results “relatively similar” to the entire item set (Sireci et al., 2000, p. 

24). The maximum cut score deviation for all but one of the analyses was about a tenth of 

a standard deviation. For the Angoff method, it was just 2.49 and 2.06 score points 

different depending on the instrument (Introductory Algebra and Intermediate Algebra). 

Conversely, using just one of their three subsets (or a third of the items) it was 4.94 and 

3.71 points and about two-tenths of a standard deviation. Based on the results, Sireci et 

al. (2000) suggested estimating performance standards with only partial items sets is 

“promising and deserves further study” (p. 28). These results suggest the feasibility of 

performance standard generalization. One limitation of their study, however, is that it 

was conducted with only a single panel (thirteen raters) and a single test instrument.  

Ferdous and Plake (2005) conducted a later study that provided an even greater 

promise of the feasibility of generalizing performance standards. Their research study 

included two different Angoff standard setting studies from a mental health program 

conducted in 1995 and 2000, and one Angoff standard setting study from a financial 

analyst program conducted in 2001 (Ferdous & Plake, 2005). Eight subsets of items were 

extracted from the original standard setting studies using a stratified sampling technique. 

Item difficulty categories were stratified to match the proportion of item difficulties on 

the full length tests. The minimum passing scores were evaluated for each sample and 

compared to the full length test. A subset of half the items was consistently within one 

point of the minimum passing score of the full test. To validate their results, the 
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researchers repeated the process two times for each test form and produced similar 

results. The results of their study suggest that a stratified sample of 50% of the items may 

be ‘sufficient’ to estimate a minimum passing score (Ferdous & Plake, 2005).  

An index for intrajudge inconsistency was also calculated for the full test and the 

subsets using a procedure developed by Chang (1999). The formula is shown below: 

ii ieijj nPPd /∑ −=  

Where, 

 Pij is the item performance estimate for judge j, item i; 

Pie is the empirical p value for item i; and 

ni is the number of items. 

When the mean intrajudge inconsistencies were compared between the 50% item 

subset and the full test items, the results were almost identical. For the 1995 mental 

health program, the intrajudge consistency was 0.13 (SD = 0.05) as compared to 0.12 

(SD = 0.05); for the 2000 mental health program, the intrajudge consistency was 0.08 

(SD = 0.03) as compared to 0.08 (SD = 0.04); and for the 2001 financial analyst study, 

the intrajudge consistency was 0.36 (SD = 0.02) as compared to 0.36 (SD = 0.02). While 

this study examined the stability of standard setting results across subject areas and 

occasions for multiple groups, it was limited by the fact that the same standard setting 

group was used for each test form (Ferdous & Plake, 2005). In other words, the same 

group participated in the standard setting process for the full set of test items. Samples 

were then derived from this larger set of items. A model in which different raters 

participated in only rating subsets of items may produce different results. Also the raters 
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might consider their ratings differently if they were permitted more time with fewer items 

to evaluate. 

Summary of the Literature Review 

There are currently a number of standard setting options available. Some are set 

unsystematically, while others use a predefined process to evaluate the examination 

content. The more widely accepted methods are the rational methods which evaluate item 

content to determine a passing standard. While the Bookmark method has rapidly grown 

in popularity since its introduction (Lee & Lewis, 2001; Perie, 2005), the Angoff method 

is still one of the “most prominent” and “widely used” standard setting methods (Ferdous 

& Plake, 2005). The Angoff and Bookmark methods; however, still carry a weight of 

controversy. 

The primary indicator of standard setting quality is reliability and consistency. 

With this type of focus, issues such as rater reliability (or unreliability), group dynamics, 

and the cognitive complexity of the standard setting process have largely dominated the 

literature. Little research has been conducted on attempting to understand the impact and 

replicate the effect of some of these issues. Reckase (2006a, 2006b) with his 

‘psychometric theory of standard setting,’ and Shultz (2006) with his detailed criticisms 

and suggestions have contributed to this area of standard setting simulation. This study is 

designed to further research on standard setting simulation by attempting to incorporate 

rater reliability and group dynamics into the simulation model. The few studies that have 

researched the feasibility of generalizing performance standards have produced favorable 

results (Sireci et al., 2000; Ferdous & Plake, 2005). This research will also attempt to 
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expand on the limited research currently available on the ability to generalize 

performance standards.  
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Chapter Three:  

Method 

 
Purpose 

The primary purpose of this research was to evaluate the extent to which a single 

minimal competency estimate from a subset of multiple choice items would generalize 

to the larger item set. Within this context there were two primary goals in this research 

endeavor: (1) evaluating the degree to which the characteristics of the two item sets and 

their relationship would impact the ability to generalize minimal competency estimates, 

and (2) evaluating the degree to which the characteristics of the standard setting process 

would impact the ability to generalize minimal competency estimates. The following 

research questions were of interest: 

Research Questions 

1. To what extent do the characteristics and the relationship between the two item sets 

impact the ability to generalize minimal competency estimates? 

a. To what extent does the distribution of item difficulties in the larger item set 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the placement of the ‘true’ performance standard influence 

the ability to generalize the estimate of minimal competency? 

c. To what extent does the number of items drawn from the larger item set 

influence the ability to generalize the estimate of minimal competency? 



www.manaraa.com

  
 44 

2. To what extent do the characteristics of the standard setting process impact the ability to 

generalize minimal competency estimates? 

a. To what extent does the number of raters in the standard setting process 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the percentage of ‘unreliable’ raters influence the ability to 

generalize the estimate of minimal competency? 

c. To what extent does the magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters influence the ability to generalize the estimate of minimal 

competency? 

d. To what extent do group dynamics and discussion during the later rounds of the 

standard setting process influence the ability to generalize the estimate of 

minimal competency? 

Research Hypotheses 

1. The following three research hypotheses were related to the research questions 

involving the extent to which the characteristics and the relationship between the two 

item sets would impact the ability to generalize minimal competency estimates. 

a. The distribution of item difficulties in the larger item set will influence the 

ability to generalize the estimate of minimal competency. Item difficulty 

distributions with a smaller variance in item difficulty parameters will generalize 

better than item difficulty distributions with a larger variance. 

b. The placement of the ‘true’ performance standard will influence the ability to 

generalize the estimate of minimal competency. A ‘true’ performance standard 
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which is closer to the center of the item difficulty distribution will generalize 

better than a placement further away. 

c. The number of items drawn from the larger item set will influence the ability to 

generalize the estimate of minimal competency. The larger the number of items 

drawn the better the generalizability of the estimate of minimal competency. 

2. The following four hypotheses are related to the research questions involving the extent 

to which the characteristics of the standard setting process would impact the ability to 

generalize minimal competency estimates. 

a. The number of raters in the standard setting process will influence the ability to 

generalize the estimate of minimal competency. The larger the number of raters 

involved in the standard setting process the better the generalizability of the 

estimate of minimal competency. 

b. The percentage of ‘unreliable’ raters will influence the ability to generalize the 

estimate of minimal competency. Standard setting situations involving a lower 

percentage of ‘unreliable’ raters will be able to generalize the estimate of 

minimal competency better than those containing a higher number of 

‘unreliable’ raters. 

c. The magnitude of ‘unreliability’ in the designated ‘unreliable’ raters will 

influence the ability to generalize the estimate of minimal competency. Standard 

setting situations involving a low magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters will be able to generalize the estimate of minimal competency 

better than those containing a high magnitude of ‘unreliability’ in the designated 
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‘unreliable’ raters. 

d. The group dynamics and discussion during the second round of the standard 

setting process will influence the ability to generalize the estimate of minimal 

competency. Group dynamics and discussion that influence the raters towards 

the center of the rating distribution will generalize better than group dynamics 

and discussion that influence the raters towards the outside of the rating 

distribution. 

Simulation Design 

 This research simulated the individual item-level estimates of minimal 

competency using a Monte Carlo Approach. This type of approach allowed the control 

and manipulation of research design factors. Every simulation study begins with various 

decision points. These decision points represent the researcher’s attempt to ground the 

simulation process in current theory and provide a foundation for the creation of ‘real 

life’ data and results that can be correctly generalized to specific populations. The initial 

decision points involved in this simulation were the type of standard setting method, the 

type of IRT model, and the number of items to be evaluated.  

 The two most popular standard setting methodologies are the Angoff and 

Bookmark methods. The Angoff method was selected over the Bookmark method as the 

standard setting method for this study due to its popularity of use (Ferdous & Plake, 

2005), stronger ability to replicate the performance standard (Reckase, 2006a), and 

greater amount of general research as well as research on the ability to generalize 

performance standards. In fact, the Bookmark method is “based on the least amount of 
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research of any (standard setting) method” (R. Hambleton, NCME session, April 10, 

2007). The IRT method selected was based on the characteristics of the items. Multiple 

choice items were used and the three-parameter IRT model which incorporates a pseudo 

guessing parameter is the most appropriate IRT model for this type of item. The decision 

to use a large sample of items for the larger sample was based on the research questions. 

There would be less economic value in dividing a small sample of items into even 

smaller samples. After deciding on the initial elements or decision points in the 

simulation process, the design of the process was formulated.  

 From a conceptual standpoint, the simulation took place in two distinct steps: data 

generation and data analysis. The data generation step consisted of simulating the 

standard setting participant’s individual estimates of minimal competency and calculating 

the resulting item-level estimates of minimal competency. These minimal competency 

estimates were simulated using 143 IRT item parameters and a pre-established ‘true’ 

performance standard.  

 The second step or data analysis step of the simulation process consisted of 

forming a smaller item set by drawing a stratified random sample from the larger item 

set. The resulting performance standard established with this smaller item set was then 

compared to the performance standard from the larger item set as well as the ‘true’ 

performance standard used to originally simulate the data. The process was repeated 

across the different levels of the factors in the simulation process. 
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Simulation Factors 

 The simulation factors were evaluated in terms of their impact on generalizability. 

The simulation factors were separated into two areas: those related to the characteristics 

and relationship between the item sets, and those related to the standard setting process.  

 The characteristics and the relationship between the two item sets included three 

factors; a) the distribution of item difficulties in the larger item set, b) the placement of 

the ‘true’ performance standard, and c) the number of items randomly drawn from the 

larger item set. 

a. Distribution of item difficulties in the larger item set. An ideal examination 

instrument is most effective “when the test items are neither too difficult nor too 

easy" for the examinee (Lord, 1980, p. 150). From an IRT perspective where the 

items and examinees are placed on the same theta scale, the shape of the item 

difficulty distribution is often a function of the intended purpose and use of the 

examination results. A wider distribution of item difficulties would be preferred 

in the case of an examination that intended to measure a wide variety of abilities 

such as academic placement tests (e.g., SAT, GRE, ACT, etc.). This would allow 

a maximum amount of information (low standard error) to be collected across a 

large number of different ability levels. Conversely, a more narrow distribution 

would be more appropriate in the case of a credentialing examination, such as a 

certification or licensing examination, where “measurement precision” is 

required at the point of the performance standard (Gibson & Weiner, 1998 p. 

299). This would provide a maximum amount of information, and hence a lower 
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standard error, at the point of the performance standard.  In order to capture the 

impact of both of these situations as well as to address some of the issues related 

to simulated vs. real data, this factor included four levels. The first level of this 

factor was the difficulty distribution of 143 actual items [published in an 

Educational Measurement: Issues and Practice article (Reckase, 2006a)]. This 

‘real’ item difficulty distribution had the second largest standard deviation and 

largest range of item difficulty values (b) of the four distributions. It was clearly 

designed to measure a wide range of abilities. The next three distributions were 

simulated. Various models have been proposed to simulate IRT parameters. 

These include sampling from uniform, beta, normal, and lognormal distributions. 

These simulations are often used to create items that cover a wide range of items 

with realistic or sometimes non-realistic characteristics to test various 

assumptions (see Gao & Chen, 2005 for an example of simulating parameters 

using uniform and four parameter beta distributions). To create simulated data as 

close as possible to actual data, the three simulated item parameter distributions 

were based on item parameter distributions from an existing examination 

program. The second distribution was a distribution of item difficulties based on 

the marginal distributions from the SAT. This simulated SAT distribution had the 

second smallest standard deviation and second smallest range of item difficulty 

values (b). A test of this nature would be designed to measure a wide range of 

abilities. The distributions of the IRT item parameter distributions for the second 

level were a ~ N(0.8,0.22), b ~ N(0, 1), and c ~ N(0.2, 0.032) [Wainer, Bradlow, 
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& Du, 2000]. The third distribution was similar to the second with a reduced 

variance for the b-parameters. The a- and c- parameters distributions were the 

same as the second distribution and the b-parameter distribution was b ~ N(0, 

0.5). This second simulated SAT distribution with the lower variance in item 

difficulty parameters had the smallest standard deviation and the smallest range 

of item difficulty values (b). A test of this nature would be designed to measure a 

more narrow range of abilities as in the case of a licensure or certification 

examination. Ideally, an examination or bank of items for mastery testing would 

consist of items with item difficulty parameters around the performance standard 

(Embretson & Reise, 2000). This would provide a maximum amount of 

information (or conversely a low standard error) around the performance 

standard. The fourth distribution was based on the a- and c- parameters 

distributions from the SAT examination, but with a uniform distribution, 

UNIFORM (-3, 3), to simulate the b-parameters. This fourth simulated SAT 

distribution with the uniform item difficulty distribution had the largest standard 

deviation and the second largest range of item difficulty values (b). A test of this 

nature would be designed to measure a wide range of abilities. To avoid any 

unusual parameter estimates, the a–parameter was left truncated at 0.3, and the c-

parameter was left truncated a 0.0 and right truncated at 0.6 (Wang, Bradlow, & 

Wainer, 2002). The four factors of the distribution of item difficulty were the 

‘real’ item difficulty distribution, the simulated SAT item difficulty distribution, 

the simulated SAT item difficulty distribution with lower variance, and the 
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simulated SAT uniform item difficulty distribution. 

b. Placement of the ‘true’ performance standard. While considerable research has 

been conducted on the process of developing performance standards in terms of 

creating definitions and descriptions of minimal competent performance 

(Fehrmann, Woehr, & Arthur, 1991; Giraud, Impara, & Plake, 2000; Reid, 1985), 

little has been conducted on the impact of the specific placement of that standard 

on a common theta scale. This is largely due to the limited simulation research in 

the area of standard setting. Reckase (2006a), one of the few researchers 

conducting simulation studies involving the use of a theta scale for determining 

minimal performance, proposed that the minimal performance level or cutscore is 

“analogous to the true score in true score theory” (p. 5). He referred to the 

minimal performance standard as a “hypothetical construct” that is the “ideal 

operationalization” of the rater’s interpretation of policy. He provided an 

example where 66% of the population would be deemed above proficient. This 

percent was selected since it is the typical percent above Proficient for states 

reviewed by the Ad Hoc Committee on Confirming Test Results (2002) 

appointed by the National Assessment Governing Board. Reckase proposed that 

this standard would be equivalent to -0.4 on the IRT theta scale. In a standard 

normal distribution, 66% of the distribution is above this point.  In Reckase’s 

study, he used a variety of performance standards from -3.00 to 3.00 or the 

majority of the theta scale (Reckase, 2006a). Due to the scope and complexity of 

this research in terms of the number of factors and their associated levels, this 
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factor included three levels in the central region of the theta scale, θmc = -1.0, 0, 

and 1.0. While not addressing all possible levels of theta, -∞ to +∞, these three 

levels of the theta scale addressed the large percentage of examines that fall 

within the center of the ability distribution. 

c. Number of items randomly drawn from the larger item set. As previously 

mentioned, the larger item set contained 143 items. For the individual subsets, 

there were six levels of this factor: 36, 47, 72, 94, 107, and 143 items. The full 

item set was included as part of the comparison to the “true” originating theta 

value as well as a quality control check in the simulation model. These item sets 

represented approximately 25%, 33%, 50%, 66%, 75%, and all of the total 

number of items. 

The characteristics of the standard setting process included elements such as the 

number of raters, the ‘unreliability’ of individual raters in terms of the percentage of 

unreliable raters and their magnitude of ‘unreliability’, and the influence of group 

dynamics and discussion.  

a. Number of raters. The size of the panel should be large enough to provide a 

precise estimation of the passing standard that would be recommended by the 

entire population of raters (Jaeger, 1989a). The number of recommended raters 

for an Angoff method standard setting approach varies throughout the literature. 

Livingston and Zieky (1982) suggested as few as five participants can be 

adequate. Mehrens and Popham (1992) suggested that 20 to 25 raters should be 

involved in the standard setting process. Brandon (2004) after a review of a 
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number of Angoff-based standard setting studies proposed that the number 

should be at least 10, and 15 to 20 in ideal circumstances. Jaeger (1989a) 

proposed a method for calculating the required number of raters using a 

comparison between the standard error of the mean recommend cut score and the 

test’s standard error of measurement. He proposed that 13 raters would have 

been sufficient in the majority of standard setting that he reviewed (Jaeger, 

1989a). Based on the recommended research on the issue of the number of raters, 

this study could potentially have levels of the number of raters factor that are as 

few as five (Livingston and Zieky, 1982) and as many as twenty-five (Mehrens 

and Popham, 1992). However, since one premise of this research is to explore the 

potential savings of a standard setting model which includes fewer overall items, 

this study will use a more conservative stance on the number of raters in line 

with the potential economic advantage of the proposed generalizability model. In 

keeping with the recommendations of the majority of researchers and at the same 

representing a sufficient range of the number of raters, the factor for the number 

of raters will have three levels: 8 raters, 12 raters, and 16 raters.  

b. Percentage of unreliable raters. Evidence exists suggesting that some raters tend 

to be unreliable in their individual estimates of minimal performance (Engelhard 

& Cramer, 1992). Schultz (2006) stated that “item rating errors are an 

acknowledged component of variation” in Angoff standard setting cut scores (p. 

5). Shepard (1995) suggested that rater judgments were “internally inconsistent 

and contradictory” (p. 151). Some raters have difficulty estimating hard and easy 
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items (Lorge & Kruglov, 1953; Mattar, 2000; Shepard, Glaser, Linn, & 

Bohrnstedt, 1993). Mattar (2000) proposed that one reason for this rater 

unreliability may be the tendency to make central judgments of difficulty 

regardless of the difficulty of the items. Recent research in the area of standard 

setting simulation with the inclusion of error has only been conducted on a single 

rater (Reckase, 2006a; Reckase, 2006b; Schultz, 2006), rather than an evaluation 

of the cumulative impact of multiple raters. This simulation research attempted to 

model error for multiple ‘fallible’ raters. While all raters in the simulation were 

simulated to contain some minimal level of unreliability (ρXX = .95), this factor 

simulated those raters deemed to be ‘fallible’ in the simulation study. This 

percentage of unreliable raters factor contained three levels: 25% of the total 

raters, 50% of the total raters, and 75% of the total raters.  

c. Magnitude of ‘unreliability’ in unreliable raters. Item difficulty estimates have 

been inaccurate, inconsistent, and contradictory (Bejar, 1983; Goodwin, 1999; 

Mills & Melican, 1988; Reid, 1991; Shepard, 1995; Swanson, 1990; Wang et al., 

2001). Raters have had trouble ‘predicting’ the performance of minimally 

competent candidates (Irwin et al, 2000). Raters also tend to think of average 

examinees as opposed to minimally competent examinees (Bowers & Shindoll, 

1989). Other issues such as preconceived perceptions of impact (Buckendahl et 

al., 2000) and a rater’s background in relation to specific content on the 

examination (Plake et al., 1991) may impact a rater’s reliability. Factors such as 

the training of standard setting participants and a well-developed definition of 
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minimal competency may also impact rater reliability. Researchers have 

suggested using models such as generalizability theory and rater judgments/p-

values differences to determine rater reliability. Checking for rater accuracy, 

however, requires a known “true” value of minimal competency and some 

researchers argue that such a value does not exist (Schultz, 2006; Wang et al., 

2003). Without the ability to determine a known “true” value of the minimal 

performance, it is difficult to assess the number and magnitude of unreliable 

raters in a standard setting process. This factor had three levels of reliability: ρXX 

= .65, .75, and .85. These levels were selected based on general acceptable levels 

of reliability in testing. 

d. Influence of group dynamics and discussion. Consecutive rounds of ratings are 

designed to “foster convergence of views” as the workshop progresses 

(Karantonis & Sireci, 2006). Extreme raters are given the opportunity to support 

their positions during the discussion phase of the Angoff standard setting process 

(Cizek, Bunch, & Koons, 2004). This discussion provides raters the opportunity 

to discuss and share pertinent item and examinee information related to examinee 

performance (Fitzpatrick, 1989). Livingston (1995) in a study of the Angoff 

method reported a likely group-influenced biasing effect of regression to the 

mean. Fitzpatrick (1989) suggested a group polarization effect during the 

discussion phase. Group polarization is described as a moderate group position 

becoming more extreme in that same direction after group interaction and 

discussion (Myers & Lamm, 1976). To simulate these possible social influences 
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in discussion round of the standard setting process, there were three levels of this 

factor: lowest rater influence, highest rater influence, and average rater influence. 

To address the directional influence of dominant raters, individual rater 

performance estimates were adjusted directionally based on the influence of one 

of the three levels of the factor using the following formula:  

rating = ε + (rating - ε) * influence_factor  

Where, ε is the rating of the influencing rater and the rating represents the 

individual item rating of the standard setting participant. The influence_factor is 

an estimate of the rater’s level of influence. It was calculated using random 

variables sampled from a normal distribution, N(0,1). These sampled values were 

multiplied by a standard deviation of 0.1 and added to a mean of 0.7. This 

influence factor was assigned to each individual rater and used systematically in 

each of their item ratings. This adjustment is based on one proposed by Reckase 

(2006b) in which ε was a constant of .5. His proposed adjustment was 

specifically designed to address uniform rating regression and contained a 

constant of .8 for the influence factor. The values in the equation were chosen to 

represent actual changes that occur in ratings during the discussion round of the 

standard setting process. Brandon (2004) conducted a review of Angoff–based 

standard setting research and found a mean reduction in variation of 31% 

(SD=21.0) for 17 of the 19 examinations that he reviewed. As a result of this 

reduction in Angoff estimates, Brandon suggests that the second round of the 

process involving discussion and a review of empirical data, “positively affect 
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agreement on item estimates” (Brandon, 2004, p. 79).  

Table 1 

Simulation Factors and the Corresponding Levels 

                        Factor Levels 
1. Characteristics and the Relationship between the Two Item Sets 

 a) item difficulties distribution (larger 

set) 

‘real’, simulated SAT, simulated 

SAT with lower variance, simulated 

uniform difficulty  

 b) ‘true’ performance standard θmc = -1.0, 0, 1.0 

 c) number of items randomly drawn 36, 47, 72, 94, 107, 143 items  

2. Standard Setting Process Characteristics 

 a) number of raters 8, 12, 16 

 b) number of unreliable raters 25%, 50%, 75% 

 c) magnitude of ‘unreliability’ in 

unreliable raters 

ρXX = .65, .75, .85. 

 d) influence of group dynamics and 

discussion 

Lowest rater, highest rater, average 

rater  

 
By crossing the seven factors in this simulation model, a total of 5,832 conditions 

were simulated. Aggregating results over a number of replications has been shown to 

produce more stable and reliable findings resulting in more precision in the estimated 

parameters (Dawber, Rodgers, & Carbonaro, 2004). Thus, increasing the number of 

replications is a recommended technique for reducing the variance of estimated 
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parameters (Harwell, Stone, & Kirisci, 1996).  

The selected number of replications for each condition was based on balancing 

time to simulate with the precision of the estimates. Table 1 provides a list of each of the 

factors and their corresponding levels. 

 Preliminary estimates suggested that a single condition should take approximately 

3 seconds to complete. Simulation studies using a proportion as an outcome variable have 

provided adequate precision with one thousand replications (see Robey & Barcikowski, 

1992). While this study does not contain a proportion as an outcome variable, this 

number of replications served as the starting value in the simulation model. Outcome 

variables were monitored to ensure adequate precision in the estimates. One model that 

was used to monitor the precision of the estimates was a review of the variability across 

different subsets of replications.   

Table 2 

Example Comparison of Estimated RMSE across Replication Sizes 

Replications 
RMSE between 

Samples 

RMSE Between 
True and Large 

Sample 

RMSE Between 
True and Small 

Sample 
100 0.033 0.156 0.177 
200 0.031 0.156 0.177 
300 0.029 0.155 0.175 
400 0.031 0.156 0.177 
500 0.031 0.156 0.177 
600 0.029 0.158 0.178 
700 0.029 0.157 0.177 
800 0.029 0.156 0.176 
900 0.029 0.155 0.175 
1000 0.029 0.154 0.174 

 
 Table 2 provides such an example from preliminary work on the simulation 
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model. The outcome variables such as the estimated root mean squared error (RMSE) 

was compared across different sets of replications, 100 to 1,000 in increments of 100 in 

this example. This change in the RMSE estimates across the different sets of replications 

can be used to determine whether an appropriate level of precision has been achieved in 

the estimates. For example, the estimated RMSE ‘across’ the two samples results in no 

change (three decimal places) from 600 through 1,000 replications. The change in the 

estimated RMSE for the other comparisons (between true and large; between true and 

small) shows a difference of 0.004 over the same sets of replication sizes. Based on the 

number of conditions and the 1,000 replications for each condition, the total number of 

simulations was 5,832,000.  

 The original estimate was that the full simulation would take 3,037.5 hours of 

computer time or roughly 31.6 days to complete the simulations using three computers 

running non-stop 24 hours per day. This original estimate was very close to the actual 

time it took to run the simulations. 

Simulation Procedures 

  Figure 1 displays a flowchart containing each phase of the simulation process, 

including the two rounds involved in data generation, the creation of the datasets, and the 

evaluation of the results. In addition to the phases in the simulation process, the 

simulation constants and various design factors points in the process are noted as well. 
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Figure 1. Simulation flowchart 

Data Generation 

 The first round in the Angoff standard setting process was conceptualized as 

containing three possible sources of error; hence, the initial data generation phase took 

place in a three-phase process. These three sources of error included the items, the raters, 

and the interaction between the two. Consider a measurement model for the individual 

sources of error as shown below. 

 Angoff_Ratingij = Grand_Mean + Item_Main_Effectj + Rater_Main_Effecti + 

Item/Rater_Interactionij 

 Each rater’s item estimate of minimal competency (Angoff_Ratingij) was 

composed of a grand mean (Grand_Mean), an item main effect (Item_Main_Effectj), a 

Phase 1: Item Main Effect 

Phase 2: Rater Main Effect 

Phase 3: Item X Rater Interaction 

Data 
Generation: 
1st Round  

Group Dynamics and Discussion 

Evaluation of Simulation Results 

Item-Level Performance Estimates 

1,000 
simulations 

for each 
condition  Data 

Generation:  
2nd Round  

Random Sampling 

Creation   
of Datasets 

Evaluation 
of Results  

IRT Difficulty Distribution 

Number of Raters 

Number and Magnitude of  
Fallible Raters

Influence of Group 
Dynamics

Percent of Items Sampled 

Simulation Process Design Factors 

Simulation Constant: 
143 Items 

Originating Performance 
Standard Theta = -1, 0, 1 
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rater main effect (Rater_Main_Effecti), and an interaction effect between items and raters 

(Item/Rater_Interactionij). A data generation phase was developed through simulation to 

reflect each of the two main effects and the interaction effect with the overall effect 

cumulative across the three phases. That is to say, the last phase of the simulation 

contained all of the three sources of model error. Variance components were calculated at 

each phase of the simulation process in order to validate the infused sources of error.  

Phase 1: Item Main Effect 

   In the first phase, the IRT parameters were used to establish rater Angoff values.  

The IRT parameters and a “true” passing standard were established using one of the four 

levels of item difficulty distributions (‘real’ item difficulty distribution, the simulated 

SAT item difficulty distribution, the simulated SAT item difficulty distribution with 

lower variance, and the simulated uniform difficulty distribution) and the initial passing 

standard was set to one of the three levels of this factor (θmc = -1.0, 0, and 1.0). Figure 2 

graphically displays the four item difficulty distributions and Table 3 through Table 6 

present the descriptive statistics for each of the item difficulty distributions.  

Table 3 
 

    

Mean, Standard Deviation, Minimum, and Maximum values of the IRT 

Parameters for the Real Distribution 

 

IRT Parameter Mean SD Minimum Maximum 
A 0.68 0.27 0.11 1.69 
B 0.44 1.07 -3.85 3.32 
C 0.16 0.09 0.00 0.31 
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Table 4 

Mean, Standard Deviation, Minimum, and Maximum values of the IRT 

Parameters for the Simulated Distribution based on the SAT 

 

IRT Parameter Mean SD Minimum Maximum 
A 0.81 0.20 0.30 1.38 
B -0.07 0.93 -2.29 2.08 
C 0.20 0.03 0.14 0.28 

 
Table 5     

Mean, Standard Deviation, Minimum, and Maximum values of the IRT 

Parameters for the Simulated Distribution based on the SAT with Lower 

Variance in b-parameters 

 

IRT Parameter Mean SD Minimum Maximum 
A 0.81 0.21 0.33 1.28 
B -0.01 0.70 -1.94 1.58 
C 0.20 0.03 0.10 0.26 

 
Table 6     

Mean, Standard Deviation, Minimum, and Maximum values of the IRT 

Parameters for the SAT Uniform Difficulty Distribution 

 

IRT Parameter Mean SD Minimum Maximum 
A 0.78 0.21 0.30 1.41 
B 0.09 1.69 -2.86 2.90 
C 0.20 0.03 0.13 0.28 

 
  The three simulated distributions were created using the WinGen Software (Han, 

2007) with population characteristics described in the simulation factors section of this 

document. To establish the individual item ratings, the true performance standard (θmc) 

was transformed into a probability for each item using a single point estimate of a three-

parameter IRT model with a known theta value and known item parameters. 
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Figure 2. Distribution of item difficulty parameters (b) for each level of the item 

difficulty distribution factor. 

The equation for the 3-parameter model as well as the description for each of the model 

parameters is stated below. 

1)]}(exp[1){1()( −−−+−+= biaiDciciP mcθθ  

Where, 

ai is the discrimination parameter for the ith item, 

bi is the difficulty parameter for the ith item, 

ci is the pseudo guessing parameter for the ith item, 

D is 1.702, and  

θmc is the minimal competency theta estimate. 
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 The three IRT parameters in the model are further described as follows: (1) the a-

parameter is the discrimination index of the item, (2) the b-parameter is the difficulty of 

the item and, (3) the c-parameter is the index of the pseudo guessing parameter for the 

item. 

 The derived probability, p(θ), was then averaged across all items and this value 

represented the grand mean (Grand_Mean) in the model. To establish the individual 

items means, the grand mean was subtracted from the overall item effect. The scale of the 

Angoff ratings was then changed to reflect practice (multiplied by 100). Raters are 

normally instructed to contemplate 100 minimally competent examinees and determine 

the number out of a hundred that would correctly respond to the item as opposed to 

determining a probability of success.  

 An example has been constructed to demonstrate the changes to the data structure 

through each phase in the simulation process. Each phase will be displayed as a table 

displaying six items with their corresponding item IRT parameters items, simulated 

Angoff values, estimated item-level theta performance estimates ( imcθ̂ ) as well as the 

estimated overall theta performance estimate for the six-item set ( kmcθ̂ ). The estimated 

overall theta performance estimate for the six items, kmcθ̂ , is the mean imcθ̂  across items. 

The calculation of the item level performance estimates, imcθ̂ , will be discussed later in 

this section. For example purposes, the originating theta in the sample tables will be 0 

and the calculated grand mean is 0.476. 
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 Before infusing an item main effect (Item_Main_Effectj) into the model, 

conceptually we can consider a model consisting of no item related differences. Table 7 

displays such an example with six essentially parallel items each with the same IRT 

parameters.  

Table 7 

Simulated Data Sample for Parallel Items 

IRT Parameters  Rater  
A B C Item 

# 
1 2 3 4 5 6 7 8 9 10 11 12

imcθ̂  

0.60 -0.69 0.21 20 74 74 74 74 74 74 74 74 74 74 74 74 0.01 
0.60 -0.69 0.21 40 74 74 74 74 74 74 74 74 74 74 74 74 0.01 
0.60 -0.69 0.21 60 74 74 74 74 74 74 74 74 74 74 74 74 0.01 
0.60 -0.69 0.21 80 74 74 74 74 74 74 74 74 74 74 74 74 0.01 
0.60 -0.69 0.21 100 74 74 74 74 74 74 74 74 74 74 74 74 0.01 
0.60 -0.69 0.21 120 74 74 74 74 74 74 74 74 74 74 74 74 0.01 

             
kmcθ̂ = 0.010 

  
 In this first conceptual stage, all raters have identical Angoff values (or estimates of 

the performance standard) both across items and across raters. The differences between 

kmcθ̂  and the originating theta value of zero are the result of rounding error in the model. 

Table 8 displays six representative items from phase one in the preliminary simulation 

results. The table presents the item-level differences resulting from phase one in the 

simulation process. Since this first phase of the model is designed to address item error 

only, no rater error has been introduced in this example and all the individual raters are 

assigned the same Angoff rating for a given item. The differences between kmcθ̂  and the 

originating theta value (zero in this example) were anticipated to be small and are 

primarily the result of rounding error in the model.   
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Table 8 

Simulated Data Sample from Phase One: Item Main Effect 

IRT Parameters  Rater  
A B C Item 

# 
1 2 3 4 5 6 7 8 9 10 11 12

imcθ̂  

0.60 -0.69 0.21 20 74 74 74 74 74 74 74 74 74 74 74 74 0.01
0.51 -0.13 0.00 40 53 53 53 53 53 53 53 53 53 53 53 53 0.01
0.46 0.26 0.22 60 57 57 57 57 57 57 57 57 57 57 57 57 -0.01
0.43 0.67 0.19 80 50 50 50 50 50 50 50 50 50 50 50 50 0.04
0.81 0.98 0.21 100 37 37 37 37 37 37 37 37 37 37 37 37 0.00
1.55 1.42 0.20 120 22 22 22 22 22 22 22 22 22 22 22 22 0.01

             
kmcθ̂ = 0.009 

 
Phase 2: Rater Main Effect 

  The number of raters is a factor in the simulation model. This factor has three 

levels: eight, twelve, and sixteen raters. To estimate the level of rater leniency or 

severity, random variables were sampled from a normal distribution, N(0,1). These 

sampled values were then multiplied by a standard deviation of 6.8 and added to a mean 

of 0 to represent the assumed systematic bias of individual raters. This standard deviation 

was selected to achieve an “acceptable” range of rater variability as suggested by Taube 

(1997). He proposed that the differences between the highest and lowest raters should be 

less than 20% of the possible Angoff values (or 20 points). The resulting value, or each 

rater’s main effect, was then added to a rater’s set of item ratings to reflect their 

individual variation. For example, Rater 2 had a calculated rater main effect of -2.1 which 

was added to Rater 2’s Angoff rating for Item 20 from the last phase (74) for a resulting 

Angoff value of 72.  
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  Table 9 displays six representative items from phase two in the preliminary 

simulation results. Once again, the differences between kmcθ̂  and the originating theta 

value (zero in this example) were anticipated to be small and are primarily the result of 

rounding error in the model.   

Table 9 

Simulated Data Sample from Phase Two: Rater Main Effect 

IRT Parameters  Rater  
A B C Item 

# 
1 2 3 4 5 6 7 8 9 10 11 12

imcθ̂  

0.60 -0.69 0.21 20 78 72 80 69 67 79 58 87 80 79 67 70 0.00 
0.51 -0.13 0.00 40 57 51 59 48 46 58 37 66 59 58 46 49 0.00 
0.46 0.26 0.22 60 62 55 63 52 51 63 42 71 64 62 51 54 0.02 
0.43 0.67 0.19 80 54 47 56 45 43 55 34 63 56 55 43 46 0.02 
0.81 0.98 0.21 100 41 35 43 32 31 43 21 50 43 42 31 34 0.01 
1.55 1.42 0.20 120 26 20 28 17 16 28 6 35 28 27 16 19 0.04 

             
kmcθ̂  = 0.016 

Phase 3: Item X Rater Interaction 

  The final source of error variance in the model was the interaction effect between 

the items and raters. It is this stage of the process that would reflect the first round of an 

Angoff standard setting workshop. After a training process, standard setting participants 

would individually review and rate the items. Participants would evaluate how many out 

of 100 minimally competent would correctly respond to a given item. These ratings or 

Angoff values would have elements of the first three phases of the simulation process 

(item main effect, rater main effect, and item X rater interaction effect). To achieve this 

unreliability, random variables were sampled from a normal distribution. These values 

were then multiplied by a predefined standard deviation and added to a mean of 0. For 

the majority of raters (non-fallible raters), the standard deviation of 6.4 was used to 
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estimate a reliability of .95 (see Coraggio, 2006, 2007). This was done to simulate normal 

variability in the rating process. To simulate the ‘fallible’ raters, the value of the standard 

deviation reflected one of the three levels of the magnitude of ‘unreliability’ in the 

simulation model (ρXX = .65, .75, and .85). These deviations scores were then added to 

each of the ‘unreliable’ rater’s Angoff values to simulate unreliability. The number of 

‘unreliable’ raters was based on one of the three levels of the percentage of unreliable 

rater’s factor: 25% of the raters, 50% of the raters, and 75% of the raters.  

 For example, Rater 5 had a calculated interaction error of -11.0 for Item 1 which 

was added to Rater 5’s Angoff rating for Item 20 from the last phase (67) for a resulting 

Angoff value of 56. Table 10 displays the six representative items from phase three in the 

preliminary simulation results.  

Table 10 

Simulated Data Sample from Phase Three 

IRT Parameters  Rater  
A B C Item 

# 
1 2 3 4 5 6 7 8 9 10 11 12

imcθ̂  

0.60 -0.69 0.21 20 74 73 71 70 56 71 54 98 78 73 66 72 -0.14 
0.51 -0.13 0.00 40 49 47 46 57 51 55 37 72 65 60 40 52 -0.01 
0.46 0.26 0.22 60 62 48 61 55 40 67 56 63 69 52 51 51 -0.06 
0.43 0.67 0.19 80 55 61 63 41 49 57 31 72 67 54 42 47 0.26 
0.81 0.98 0.21 100 46 31 45 33 42 33 14 62 47 46 31 26 0.06 
1.55 1.42 0.20 120 33 17 30 10 27 30 9 33 26 23 6 19 -0.01 

             
kmcθ̂  = 0.018 

 
 While there were no ‘unreliable’ raters and only a small amount of unreliability 

was simulated in this preliminary simulation (ρXX = .95) across all raters, the differences 

between kmcθ̂  and the originating theta value (zero in this example) were generally larger 
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at this phase depending on the number of ‘unreliable’ raters and the magnitude of their 

unreliability.  Even in this preliminary simulation, however, differences as a result of the 

unreliability can be seen for specific items such as Item 80. This is largely due to the 

restricted number of raters and items in the simulation model. 

Group Dynamics and Discussion 

After the conditions for the initial standard setting round was complete, the 

second round or discussion round was simulated. The discussion round of the Angoff 

standard setting workshop usually includes a group discussion regarding those items that 

did not meet some predetermined level of group consensus. This process usually involves 

an item-by-item review of those highlighted items with a statement from the highest and 

the lowest rater regarding their justifications for their individual ratings. Other 

participants generally add to the discussion as well. Finally, standard setting participants 

are asked to review their individual ratings for a given item and are permitted to change 

their ratings if they so choose. Standard setting research on second round performance 

suggests that providing information to raters will generally produce “small and 

inconsistent” changes in the overall mean performance standard, but will result in lower 

rater variability (Busch & Jaeger, 1990, p. 148). Brandon (2004) after conducting a 

review of the empirical literature on modified Angoff standard setting also concluded that 

the variability of rater estimates decreases after raters engage in between-round activities. 

Researchers have also suggested a group-influenced biasing effect of regression to the 

mean (Livingston, 1995) in addition to a group polarization effect during the discussion 

phase (Fitzpatrick, 1989). To address the uniform rating regression and the directional 
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influence of dominant raters, individual rater performance estimates were adjusted 

directionally based on one of the three levels of the influence factor: the lowest rater 

influence, the highest rater influence, and the average rater influence. The following 

formula based on an adjustment proposed by Reckase (2006b) was used to simulate this 

group influence during the discussion phase of the standard setting process: 

rating = ε + (rating - ε) * influence_factor  

Where, ε is the rating of the influencing rater (lowest rater, the highest rater, or 

the average rater) as mentioned in the three levels of the influence factor, and the rating 

represents the individual item rating of the standard setting participant. To estimate the 

level of variability for the rater’s level of influence, an influence_factor was calculated 

using random variables sampled from a normal distribution, N(0,1). These sampled 

values were then multiplied by a standard deviation of 0.1 and added to a mean of 0.7. 

These values were selected to provide an acceptable amount of variability in the degree 

of influence for each rater. This influence_factor was assigned to each individual rater 

and used systematically in each of their item ratings for the discussion phase of the 

simulation.  

For example, the average rater was the level of the directional influence for the 

preliminary simulation and the mean rating for Item 1 was 70.67.  Rater 7 had a 

calculated influence_factor of 0.84 and a rating for Item 1 of 54. The resulting calculation 

was 70.67 + (54 -70.67) * 0.84 or 57. Table 11 displays six representative items from the 

discussion phase in the preliminary simulation results. While there was little difference 

between the kmcθ̂ calculated in the third phase and the kmcθ̂ calculated in the discussion 
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phase, this is largely due to the selection of the directional influence towards the average 

rater. The differences between kmcθ̂  and the originating theta value (zero in this example) 

were generally much larger at this phase depending on the level of the directional 

influence factor. 

Individual Item Performance Standard Estimates 

To create the individual item performance standard estimates for each item from 

the simulated data, imcθ̂  was calculated for each item using a formula based on an IRT 

procedure proposed by Coraggio (2005, 2007). This procedure was designed to link item 

ratings and estimates of minimal competency with a common theta scale. Details 

regarding the basis for the formula and the transformation are located in Appendix A.   

Table 11 

Simulated Data Sample from Discussion Phase 

IRT Parameters  Rater  
A B C Item# 1 2 3 4 5 6 7 8 9 10 11 12

imcθ̂  
0.60 -0.69 0.21 20 73 72 71 70 60 71 57 87 76 72 67 72 -0.17 
0.51 -0.13 0.00 40 50 49 48 56 51 54 40 64 62 57 42 52 -0.03 
0.46 0.26 0.22 60 60 52 60 55 45 62 56 60 66 54 52 52 -0.06 
0.43 0.67 0.19 80 54 58 60 45 50 55 35 64 63 54 44 48 0.21 
0.81 0.98 0.21 100 43 34 43 34 41 35 18 52 45 43 32 28 0.02 
1.55 1.42 0.20 120 29 19 28 13 26 26 11 28 25 23 9 20 -0.13 

             
kmcθ̂  = -0.028 
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The final transformation of the formula for imcθ̂  is as follows: 
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Where, 

iγ  is the mean rater Angoff rating for the ith item, 

ai is the a-parameter for the ith item, 

bi is the b-parameter for the ith item, 

ci is the c-parameter for the ith item, and 

D is a scaling factor of 1.702 used in the 3-parameter IRT model. 

Figure 3 displays a graphical representation of the relationship between the 

Angoff ratings (probabilities) and the minimal competency estimates on the theta scale.  
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Figure 3. Relationship between the Angoff ratings (probabilities) and the minimal 

competency estimates (theta) for a given item. 
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The simulation program produced 143 item-level performance standard estimates 

( imcθ̂ ). A sampling macro, samplethetas2, was run to perform stratified random sampling 

on the full 143-item dataset. A stratified sampling model was designed to create a sample 

that was similar in terms of item difficulty and item discrimination as the original 143-

item set. This model is consistent with the current literature in item selection strategies 

for standard setting. Ferdous and Plake (2007) used a similar sampling method that 

stratified samples according to content, item p-values, and item discrimination levels. 

Smith and Ferdous (2007) found that sampling models that stratified on p-value intervals 

and p-value density assist in reducing the standard error of the cutscore. The previous 

methods have predominately used classical statistics with pre-existing datasets in 

employing their stratified sampling models.  This study sought to build on this previous 

research by employing a sampling model that stratified on item difficulty (b-parameters) 

and item discrimination (a-parameters).  

Item difficulty distributions were separated into thirds by item difficulty and item 

discrimination parameters. A three-by-three stratification matrix was then constructed for 

each individual item difficulty distribution. The corresponding percentages of items in 

each cell were used along with the surveyselect procedure in SAS to create the individual 

samples. This ensured that the samples were similar to the full 143-item set in terms of 

item difficulty and item discrimination. The size of the sample varied depending on the 

level of the factor. The number of items sampled was 36, 47, 72, 94, and 107. The sample 

sizes represented approximately 25%, 33%, 50%, 66%, and 75% of the total number of 

items. The full 143-item set was also included as a comparison group. The difference 
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between the sample performance estimate, the performance estimate derived from the 

complete 143 item set, and the ‘true’ originating performance estimate was stored and 

aggregated across the simulations. Appendix B contains the SAS code for one set of 

conditions from the generalizability study. 

Simulation Model Validation 

The first criticism of any simulation procedure is whether the results can be 

generalized to ‘real life’ situations. Without any real life generalizability, the results of 

the simulation study add little or no contribution to the body of research literature. The 

ideal approach is to begin with a simulation model that has already been validated 

through previous research. Unfortunately, little research exists in the area of standard 

setting simulation studies and the basis for this proposed simulation model has only 

recently been explored. In order to begin to establish the validity of this proposed 

simulation process, multiple sources of internal and external validity evidence are 

presented below. While individually each source may not provide enough evidence to 

validate the model on its own merit, cumulatively they begin to provide a solid basis of 

support. 

Internal Sources of Validity Evidence 

Sources of Error. To validate the sources of error in the model (item, rater, and 

item/rater interaction), variance components were used to verify that error was 

appropriately applied to the originating source. These variance components were 

calculated as an element of the simulation process and were periodically reviewed during 

preliminary simulations to ensure that the process was operating as intended. 
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Recovery of Originating Performance Standard. While there has been 

considerable attention in the literature regarding the existence of a ‘true’ performance 

standard (see Schultz, 2006; Wang et al., 2003); the ability for a standard setting 

methodology to recover an originating standard in a relatively error-free environment 

seems like a logical assumption (Reckase, 2005; Reckase, 2006a). Preliminary 

simulations of the simulation model indicate the simulation model’s ability to recover the 

originating performance standard. The simulation results had a mean bias of 0.051 with 

an originating performance standard of 0 after 1,000 replications, where the number of 

raters was twelve, the reliability for all raters was .95, and the full 143 item set was used 

with the ‘real’ IRT parameters. Under similar conditions with an originating performance 

standard of -1, the mean bias was -0.051 after 1,000 replications. 

Standard Setting Model Fit to IRT Model. While van der Linden (1982) suggested 

the use of IRT in the analyzing data, there is no assurance that the minimum passing 

levels (Angoff ratings) produced by the standard setting raters adequately fit an IRT 

model (Kane, 1987). Kane (1987) proposed a test of IRT model fit for standard setting 

ratings.  

His model is shown by the formula:   

( )[ ]∑ ∑ −=
i i

iRiiiRiR MPMZ 22 )(/*)( σθ  

Where, 

MiR is the mean Angoff probability rating on Item i for k raters, and 

P(θ*) is the probability value for θ* on the item characteristic curve that 

characterizes minimal competency for Item i. 
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 The resulting value is distributed as a chi-square with n -1 degrees of freedom. 

While Kane (1987) did not provide an example using actual data, he did suggest that the 

issue of independence could be “problematic when all items are reviewed by the same 

raters” (p. 336). He felt that the independence assumption should be robust as long as the 

correlated errors are small compared to the random errors, specifically, the variation in 

specific raters rating specific items over different occasions. Preliminary simulation 

results were evaluated using Kane’s IRT fit model. Results suggest that these standard 

setting data correctly fit an IRT framework. This result is not completely unexpected as 

IRT was used to initially determine the estimates, however, it does provide additional 

validation evidence for the simulation model.  

External Sources of Validity Evidence 

Research Basis for Simulation Factors and Corresponding Levels. When 

possible, each factor and its associated levels were related to actual standard setting 

conditions as discussed earlier in the simulation factors section of this document. For 

example, the ‘real’ IRT parameters were previously published parameters and the other 

simulated distributions were established from published information on the SAT 

examination. Other examples include the number of raters and the influence of group 

dynamics conditions.   

Similarity of Simulation Data Characteristics with Performance Data in the 

Literature. Simulation data characteristics were similar to those presented in the research 

literature. For example, the variance in rater estimates decreased between the first and 

second round while little change occurred in overall performance standard estimate. This 
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finding is consistent with published research (Busch & Jaeger, 1990; Hurtz & Auerbach, 

2003).   

Review by Content Expert.  A preliminary study using a similar version of the 

simulation model (Coraggio, 2007) was reviewed by a notable expert in the area of 

standard setting and generalizing performance standards, his comments regarding the 

methodology were very favorable with no suggested changes to the simulation 

methodology (S. G. Sireci, personal interview, April 11, 2007). 

 Comparisons to ‘Real’ Standard Setting Datasets. The availability of Angoff 

datasets is limited in the existing research for reasons of privacy and test security.  For 

purposes of model validity, comparisons were made between an actual two round Angoff 

dataset (provided by S. G. Sireci) and simulated dataset with similar characteristics. The 

actual Angoff dataset contained 13 raters. One rater was randomly selected and removed 

in order to match simulation parameters.  

Comparisons were made between the phase 3 of the simulation (item X rater 

interaction phase) and the initial round (independent ratings) of the actual Angoff dataset. 

Since the simulation was designed to represent a number of factors across various 

conditions, research was conducted to find the condition which had the closest 

representation to the actual Angoff dataset. Due to the nature of simulation study, 

individual conditions contained replication results which had a certain amount of 

variability. Therefore, multiple replications were also simulated for conditions which 

produced similar results.  
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The simulation condition closest to the actual Angoff dataset had the following 

factor levels: directional influence = ‘lowest rater’, item difficulty distribution = ‘real’, 

sample size = ‘143’, number of raters = ‘12’, percentage of fallible raters = ‘75%’, 

reliability of fallible raters = ‘.75’, and location of the originating theta = ‘-1’. The results 

of the comparison between the actual Angoff dataset and the cumulative results of 12 

replications of the simulation condition are included in Table 12. The variance for the 

item main effect (51.8%) was very close to the mean for the twelve simulation runs 

(56.3%) and the variance for the item by rater interaction was a little more than 1 

percentage point difference (35.9% to 37.0%). 

Table 12     

Comparison of Simulated Angoff Variance Percentages with ‘Real’ Angoff 

Dataset during Round 1 

Simulation Resultsa Outcome Actual 
Data Mean SD Min Max 

Var(Item) 51.8% 56.3% 1.8% 53.7% 59.4% 
Var(Raters) 12.3% 6.7% 2.5% 2.0% 10.1% 
Var(Item*Raters) 35.9% 37.0% 1.7% 34.4% 40.9% 

a n=12 replications with the simulation condition that included the following factor levels directional 
influence = ‘lowest rater’, tem difficulty distribution = ‘real’, sample size = ‘143’, number of raters = ‘12’, 
percentage of fallible raters = ‘75%’, reliability of fallible raters = ‘.75’, and location of the originating 
theta = ‘-1’ 
 
 Comparisons were also made between the selected condition at the discussion 

phase of the simulation and the second round (after group discussion) of the actual 

Angoff dataset. These results are included in Table 13.  

 The variance for the item main effect (65.9%) was only one percentage point 

away from the mean for the twelve simulation runs (66.9%). The difference in variance 

for the item by rater interaction was less than 1 percentage point difference (26.1% to 
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26.9%). These results suggest that the simulated data function similarly to the actual 

Angoff data. 

Table 13     

Comparison of Simulated Angoff Variance Percentages with ‘Real’ Angoff 

Dataset during Round 2 

Simulation Resultsa Outcome Actual 
Data Mean SD Min Max 

Var(Item) 65.9% 66.9% 3.5% 62.0% 73.2% 
Var(Raters) 8.0% 6.2% 2.5% 1.5% 9.8% 
Var(Item*Raters) 26.1% 26.9% 2.6% 22.2% 31.5% 

a n=12 replications with the simulation condition that included the following factor levels directional 
influence = ‘lowest rater’, tem difficulty distribution = ‘real’, sample size = ‘143’, number of raters = ‘12’, 
percentage of fallible raters = ‘75%’, reliability of fallible raters = ‘.75’, and location of the originating 
theta = ‘-1’ 
 

Programming 

This research was conducted using SAS version 9.1.3 SP 4. Conditions for the study 

were run under the Windows Vista Business platform. Normally distributed random 

variables were generated using the RANNOR random number generator in SAS.  A different 

seed value for the random number generator was used in each execution of the program. For 

each condition in the research design, 1,000 samples were simulated.  

Analysis 

The ability to ‘adequately’ generalize the performance was evaluated in terms of 

the differences between the performance standard derived with the larger item set and the 

performance standard derived with the smaller subset of multiple choice items. The 

difference between the sample and the originating performance standard (θmc) was also 

evaluated. The aggregated simulation results were evaluated in terms of the location 
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(bias) and the variability (mean absolute deviation, root mean square error) in the 

estimates.  

Location was identified by calculating the bias or mean error (ME). Bias is the 

mean difference between the sample performance standard (
kmcθ̂ ) and the full 143-item 

set performance standard (
143

ˆ
mcθ ).  

( )∑ =
−=

n

k mcmckn
ME

1 143
ˆˆ1 θθ , where the summation is over the 1,000 replications. 

The difference between the sample (
kmcθ̂ ) and the originating performance 

standard (θmc) was also evaluated. 

1
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n
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= −∑ , where the summation is over the 1,000 replications. 

Variability was identified by calculating the root mean squared error (RMSE). 

RMSE is the square root of the sum of squares divided by the number of samples. The 

sum of squares was calculated with the difference between the sample performance 

standard (
kmcθ̂ ) and the full 143-item set performance standard (

143

ˆ
mcθ ).  
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The RMSE difference between the sample (
kmcθ̂ ) and the originating performance 

standard (θmc) was also evaluated. 
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Variability was also identified by calculating the mean absolute deviation (MAD). 

MAD is the sum of the absolute differences divided by the number of samples. The MAD 

was calculated between the sample performance standard (
kmcθ̂ ) and the full 143-item set 

performance standard (
143

ˆ
mcθ ). 

( )
n

MAD
n

k mcmck∑ =
−

= 1 143
ˆˆ θθ

 

The MAD between the sample (
kmcθ̂ ) and the originating performance standard 

(θmc) was also evaluated. 
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Results were analyzed by computing eta-squared (η2) values. Critical factors were 

identified using eta-squared (η2) to estimate the proportion of variance associated with 

each effect (Maxwell & Delaney, 1990). Cohen (1977, 1988) proposed descriptors for 

interpreting eta-squared values; (a) small effect size: η2 = .01; (b) medium effect size: η2 

= .06, and (c) large effect size: η2 = .14. For this research study, the Critical factors were 

identified using Cohen’s medium effect size criteria, η2 = .06.  

Research Question 1 

 Research Question 1, evaluating the impact of the characteristics and the 

relationship between the two item sets in the ability to generalize minimal competency 

estimates, was addressed by examining proportion of variance associated with each effect 

(η2) using Cohen’s medium effect size criteria, η2 = 0.06. The outcomes were averaged 

over all conditions and averaged separately for each level of the associated factors being 
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examined (the distribution of item difficulties in the larger item set, the placement of the 

‘true’ performance standard, and the number of items randomly drawn from the larger 

item set). If there were significant interactions between factors in research question 1, 

graphs were constructed to display these relationships. 

Research Question 2  

 Research Question 2, evaluating the impact of the characteristics of the standard 

setting process in the ability to generalize minimal competency estimates, were addressed 

by examining proportion of variance associated with each effect (η2) using Cohen’s 

medium effect size criteria, η2 = 0.06. The outcomes were averaged over all conditions 

and averaged separately for each level of the associated factors being examined (the 

number of raters, the ‘unreliability’ of individual raters in terms of the percentage of 

unreliable raters and their magnitude of ‘unreliability’, and the influence of group 

dynamics and discussion). If there were significant interactions between factors in 

research question 2, graphs were constructed to display these relationships. 
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Chapter Four:  

Results 

 
 This chapter presents the results of the study as they relate to each of the 

individual research questions. The chapter initially begins by describing how the results 

were evaluated and then presents the results in two sections, one section for each 

generalizability comparison. The first generalizability comparison is evaluating the 

difference between the small sample performance estimate and the performance estimate 

derived from the complete 143-item set. The second generalizability comparison is 

evaluating the difference between the small sample performance estimate and the ‘true’ 

originating performance estimate. Each generalizability comparison section will be 

subdivided by the outcome measures (bias, mean absolute deviation, and root mean 

square error) and results will be presented in the order of the research questions. 

Following the discussion on the results of the generalizability comparisons, performance 

standards derived from the simulation study will be compared to performance standards 

set with 112 Angoff values from an actual standard setting study. Random stratified 

sampling will be performed on this population of Angoff values and then compared with 

the results of the simulation. The last section of the chapter will be a summary of the 

results presented.  

 The two research questions relate to the extent to which various factors impact the 

ability to generalize minimal competency estimates. The first research question involves 

factors related to the characteristics and the relationship between the two item sets. The 
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second research question involves factors related to the standard setting process. The 

following research questions are addressed by the results: 

Research Questions 

1. To what extent do the characteristics and the relationship between the two item sets 

impact the ability to generalize minimal competency estimates? 

a. To what extent does the distribution of item difficulties in the larger item set 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the placement of the ‘true’ performance standard influence 

the ability to generalize the estimate of minimal competency? 

c. To what extent does the number of items drawn from the larger item set 

influence the ability to generalize the estimate of minimal competency? 

2. To what extent do the characteristics of the standard setting process impact the ability to 

generalize minimal competency estimates? 

a. To what extent does the number of raters in the standard setting process 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the percentage of ‘unreliable’ raters influence the ability to 

generalize the estimate of minimal competency? 

c. To what extent does the magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters influence the ability to generalize the estimate of minimal 

competency? 

d. To what extent do group dynamics and discussion during the later rounds of the 

standard setting process influence the ability to generalize the estimate of 
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minimal competency? 

Results Evaluation 

 There were 5,832 conditions simulated using the seven factors of this Monte 

Carlo study. The seven factors were the item difficulty distributions in the larger 143-

item set (‘real’ item difficulty distribution, simulated SAT item difficulty distribution, 

simulated SAT item difficulty distribution with reduced variance, and simulated uniform 

item difficulty distribution), location of the ‘true’ performance standard (θmc = -1.0, 0, 

1.0), number of items randomly drawn in the sample (36, 47, 72, 94, 107, and the full 

item set), number of raters (8, 12, 16), percentage of unreliable raters (25%, 50%, 75%), 

magnitude of ‘unreliability’ in unreliable raters (ρXX = .65, .75, .85), and the directional 

influence of group dynamics and discussion (lowest rater, highest rater, average rater). 

This resulted in 4 (item difficulty distributions) x 3 (originating performance standards) x 

6 (item sample sizes) x 3 (rater configurations) x 3 (percentage of unreliable raters) x 3 

(directional group dynamics) = 5,832 conditions.  

 The results of the simulation were evaluated using PROC GLM in SAS such that 

the dependent variables were Bias, RMSE, and MAD and the independent variables were 

the seven different factors. The effect size, eta-squared (η2), was calculated to measure 

the degree of the association between the independent variables main effects and the 

dependent variables along with the two-way and three-way interaction effects between 

the independent variables and the dependent variables. Eta-squared is the estimated 

proportion of variability in each of the outcomes associated with each factor in the 

simulation design. It is calculated as the ratio of the effect variance (SSeffect) to the total 
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variance (SStotal). 

total

effect

SS
SS

=2η  

Generalizability Comparison I 

 Each generalizability comparison section will be subdivided by the outcome 

measures (bias, mean absolute deviation, and root mean square error) and results will be 

presented in the order of the research questions. The first generalizability comparison 

evaluated the difference between the small sample performance estimate and the 

performance estimate derived from the complete 143-item set. The first research question 

involves the extent to which the characteristics and the relationship between the two item 

sets impacted the ability to generalize minimal competency estimates. This is followed by 

the second research question which involves the extent to which the characteristics of the 

standard setting process impacted the ability to generalize minimal competency 

estimates. The text of the research questions will be repeated verbatim in each section in 

order to provide a proper reference for the reader. Table 14 displays the descriptive 

statistics for each of the outcome measures across the 5,832 conditions for 

Generalizability Comparison I.  

 The mean for estimated bias was 0.000 (SD = 0.004) with a range from -0.022 to 

0.024. The mean for estimated RMSE was 0.035 (SD = 0.028) with a range from 0.000 to 

0.178 and the mean for estimated MAD was 0.026 (SD = 0.020) with a range from 0.000 

to 0.130. 
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Table 14     

Mean, Standard Deviation, Minimum, and Maximum Values for Outcomes 

Associated with Generalizability Comparison I (N=5832) 

 

Outcome Mean SD Min Max 
Bias 0.000 0.004 -0.022 0.024 
RMSE 0.035 0.028 0.000 0.178 
MAD 0.026 0.020 0.000 0.130 

 
 Figure 4 is a graphical representation of the distributions for each of the three 

outcome variables. 

 

Figure 4. Outcome distributions for Generalizability Comparison I 

 The results of the simulation were evaluated using SAS PROC GLM. The 

dependent variables in the model were the three outcome variables, Bias, RMSE, and 

MAD. The seven independent variables were the seven different factors from the 
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simulation model. Three different models were evaluated, main effects model, two-way 

interaction model, and three-way interaction model. For the bias outcome, only 18.9% of 

the variability was explained by the main effects of the seven simulation factors. In terms 

of RMSE and MAD outcomes, 84.6% and 86.3% of the variability was explained, 

respectively, by the main effects of the seven simulation factors. 

 Table 15 displays the eta-squared values for each of the main effects for 

generalizability comparison I. Using the pre-established standard of Cohen’s medium 

effect size criteria (η2 = 0.06), the only note worthy bias main effect was the sample size 

factor (η2 = 0.17). In terms of the RMSE and MAD main effect, the same four of the 

factors had eta-squared values resulting in at least a medium effect. These included the 

directional influence factor, the item difficulty distribution factor, number of sample item 

factor and the location of the ‘true’ performance standard factor. 

Table 15     

Eta-squared Analysis of the Main Effects of the Factors in the Simulation 

for Generalizability Comparison I 

 

Outcome  Bias η2 MAD η2  RMSE η2 
Direct 0.01 0.06* 0.07* 
Dist 0.01 0.07* 0.07* 
SampleN 0.17* 0.63* 0.60* 
RaterN 0.00 0.01 0.02 
Fallible% 0.00 0.01 0.01 
ρXX 0.00 0.01 0.01 
θmc 0.01 0.07* 0.08* 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
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 The amount of explained variability in the bias outcome increased substantially to 

68.3% in the two-way interaction model. The RMSE and MAD outcomes experienced 

more modest increases in explained variability with 97.4% and 98.1%, respectively in the 

two-way interaction model. Table 16 displays the eta-squared values for each of the two-

way interaction effects for Generalizability Comparison I.  

Table 16     

Eta-square Analysis of the Two-way Interaction Effects of the Factors in the 

Simulation for Generalizability Comparison I 

 

Outcome      Bias η2     MAD η2       RMSE η2 
Direct x Dist 0.02 0.01 0.01 
Direct x SampleN 0.04 0.02 0.03 
Direct x RaterN 0.00 0.00 0.00 
SampleN x Dist 0.38* 0.03 0.03 
RaterN x Dist 0.00 0.00 0.00 
RaterN x SampleN 0.00 0.01 0.01 
Fallible% x Direct 0.00 0.00 0.00 
Fallible% x Dist 0.00 0.00 0.00 
Fallible% x SampleN 0.00 0.00 0.00 
Fallible% x RaterN 0.00 0.00 0.00 
Fallible% x ρXX 0.00 0.00 0.00 
Fallible% x θmc 0.00 0.00 0.00 
ρXX x Direct 0.00 0.00 0.00 
ρXX x Dist 0.00 0.00 0.00 
ρXX x SampleN 0.00 0.01 0.00 
ρXX x RaterN 0.00 0.00 0.00 
ρXX x θmc 0.00 0.00 0.00 
θmc x Direct 0.00 0.01 0.02 
θmc x Dist 0.02 0.01 0.01 
θmc x SampleN 0.03 0.03 0.03 
θmc RaterN 0.00 0.00 0.00 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
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 Using the pre-established standard of Cohen’s medium effect size criteria (η2 = 

0.06), the only note worthy bias interaction effect was the two-way interaction between 

the sample size factor and the item difficulty distribution factor (η2 = 0.38). In terms of 

the RMSE and MAD main effect, there were no two-way interactions that met the pre-

established criteria. 

 The amount of explained variability in the bias outcome increased slightly to 

70.1% in the three-way interaction model. In terms of the RMSE and MAD outcomes, 

almost all of the variability was explained in the three-way interaction model with 98.6% 

and 99.1% of the variability explained by the model, respectively.  

Table 17     

Eta-square Analysis of the Three-way Interaction Effects of the Factors in 

the Simulation for Generalizability Comparison I 

 

Outcome        Bias η2     MAD η2       RMSE η2 
Direct x RaterN x Dist 0.00 0.00 0.00 
Direct x RaterN x SampleN 0.00 0.00 0.00 
RaterN x SampleN x Dist 0.00 0.00 0.00 
Fallible% x ρXX  x Direct 0.00 0.00 0.00 
Fallible% x ρXX  x Dist 0.00 0.00 0.00 
Fallible% x ρXX  x SampleN 0.00 0.00 0.00 
Fallible% x ρXX  x RaterN 0.00 0.00 0.00 
Fallible% x ρXX  x θmc 0.00 0.00 0.00 
ρXX x θmc x Direct 0.00 0.00 0.00 
ρXX x θmc x Direct x Dist 0.00 0.00 0.00 
ρXX x θmc x Direct x SampleN 0.00 0.00 0.00 
ρXX x θmc x Direct x RaterN 0.00 0.00 0.00 
θmc x Direct x Dist 0.01 0.00 0.01 
θmc x Direct x SampleN 0.01 0.01 0.01 
θmc x Direct x RaterN 0.00 0.00 0.00 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
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Table 17 displays the eta-squared values for each of the three-way interaction 

effects for generalizability comparison I. Using the pre-established standard of Cohen’s 

medium effect size criteria (η2 = 0.06), there were no note worthy three-way interactions. 

Bias in Generalizability Comparison I 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 

performance standard influence, and the number of items drawn from the larger item set.  

 

Figure 5. Estimated bias for small sample size bias for Generalizability Comparison I. 
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The number of sample items factor was the only factor of the three in research 

question 1 that resulted in a medium or greater effect size for eta-squared. In fact, the 

bias in theta estimates for the ‘true’ performance standard factor resulted in a large effect 

size (η2 = 0.17). The six levels of this factor included sample sizes of 36, 47, 72, 94, 107, 

as well as the full 143-item set. Figure 5 displays the box plots for bias for each of the 

six sample sizes. 

Though the bias estimates were generally very small (+/-0.003), the mean bias 

and the variability in bias estimates decreased as the number of items in the small sample 

size increased. The bias mean, standard deviation, minimum, and maximum values are 

shown in Table 18.  

Table 18    

Bias Mean, Standard Deviation, Minimum and Maximum for Small 

Sample Size Factor Associated with Generalizability Comparison I 

(n=972) 

Sample Size Mean SD Min Max 
36 -0.003 0.006 -0.022 0.014 
47 0.002 0.005 -0.015 0.024 
72 0.001 0.004 -0.014 0.014 
94 0.000 0.002 -0.007 0.008 
107 0.001 0.002 -0.005 0.007 
143 0.000 0.000 0.000 0.000 

 
The sample size factor also interacted with the item difficulty distribution factor 

(η2 = 0.38). The item difficulty distribution factor had four levels which included a 

distribution of ‘real’ items, a simulated distribution based on the SAT, a second 

simulated distribution based on the SAT with reduced variance, and a simulated uniform 
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distribution. The bias in theta estimates for the item difficulty distributions factor was 

relatively small (η2 = 0.01). Figure 6 graphically displays this two-way interaction 

between the sample size and item difficulty distribution factor. The results of the 

simulation suggest that there was more variability in average bias estimates when the 

sample size was small with the variability in average bias estimates decreasing as the 

sample size increased. The average bias was the greatest in the simulated uniform 

distribution, which initially was negatively bias in the 36-item small and was positively 

bias for the remaining samples.  

 

Figure 6. Two-way bias interaction between item difficulty distributions and small 

sample size for Generalizability Comparison I. 
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The last factor in research question 1, placement of the ‘true’ performance 

standard, had three levels which included an originating theta of -1, 0, and 1. The 

variance in bias in theta estimates associated with the ‘true’ performance standard factor 

was relatively small (η2 = 0.01). 

Research Question 2.  The second research question, “To what extent do the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 

This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 

None of the four factors in research question 2 resulted in a medium or larger 

effect size in eta-squared. The number of raters factor had three levels which included 8, 

12, and 16 raters involved in the standard setting process. The variance in estimated bias 

in theta estimates associated with the number of raters factor was very small (η2 = 0.00). 

The percentage of unreliable raters factor also had three levels which included 25%, 

50%, and 75% of raters which were unreliable in their estimates. The effect size for the 

estimated bias in theta estimates associated with the percentage of unreliable raters 

factor was also small (η2 = 0.00). The magnitude of ‘unreliability’ factor had three levels 

which included reliabilities (ρXX) of .65, .75, and .85. The variance in estimated bias in 

theta estimates associated with the magnitude of ‘unreliability’ factor was also very 

small (η2 = 0.00). The directional influence factor had three levels of this factor for the 

directional impact of group dynamics and discussion. They included influence towards 
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the lowest rater, highest rater, and average rater. Similar to the last three factors, the 

variance in estimated bias in theta estimates associated with the directional influence 

factor was not notable (η2 = 0.01). 

Root Mean Square Error in Generalizability Comparison I 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 

performance standard influence, and the number of items drawn from the larger item set.  

Table 19    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Item 

Difficulty Distribution Factor Associated with Generalizability 

Comparison  I (n=1458) 

Item Difficulty 
Distribution Mean SD Min Max 

Real Item 0.04 0.03 0.00 0.18 
Sim. SAT Low 0.03 0.02 0.00 0.12 
Sim. SAT 0.03 0.02 0.00 0.14 
Sim. Unif. 0.04 0.03 0.00 0.13 

 
All three of the factors in research question 1 for RMSE had eta-squared values 

that resulted in a medium effect or greater. The estimated RMSE in theta estimates 

associated with the item difficulty distribution factor exceeded the pre-established 

standard with an eta-squared (η2) of 0.07. Table 19 displays the mean, standard 

deviation, minimum, and maximum for the four levels of the item difficulty distribution 
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factor for Generalizability Comparison I. 

While real item difficulty distribution and the simulated uniform distribution had 

slightly higher RMSE means and standard deviations than the other two distributions, 

one noticeable difference between the item difficulty distributions was the higher range 

of the RMSE estimates for the real item difficulty distribution as opposed to the other 

three simulated distributions as shown in Figure 7. 

 

Figure 7. Estimated RMSE for item difficulty distributions for Generalizability 

Comparison I. 

The effect size for the estimated RMSE in theta estimates associated with the 

placement of the ‘true’ performance standard factor (η2 = 0.08) also exceeded the pre-

established standard. The estimated mean RMSE for an originating theta of -1 was 
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higher (0.05) than the other two estimated mean RMSE values (0.03) as shown in Table 

20.  

Table 20    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Placement of the 

‘True’ Performance Standard Factor Associated with Generalizability 

Comparison  I (n=1944) 

Originating Theta Mean SD Min Max 
-1 0.05 0.03 0.00 0.18 
0 0.03 0.03 0.00 0.13 
1 0.03 0.02 0.00 0.11 

 
In addition to the estimated RMSE mean difference among samples, the upper 

most limit of each originating theta value was different with -1 having the highest (0.18) 

of the three values as visually displayed in Figure 8. 

The variance in the estimated RMSE in theta estimates associated with the 

number of sample items factor had the highest eta-squared value (η2 = 0.60) of any of the 

RMSE effects in Generalizability Comparison I. The estimated mean RMSE decreased 

as the size of the sample increased as shown in Table 21. 
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Figure 8. Estimated RMSE for the placement of the ‘true’ performance standard for 

Generalizability Comparison I. 

Table 21    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Number of 

Sample Items Factor Associated with Generalizability Comparison  I (n=972) 

Sample Size Mean SD Min Max 
36 0.07 0.03 0.02 0.18 
47 0.06 0.02 0.02 0.15 
72 0.04 0.02 0.01 0.10 
94 0.03 0.01 0.01 0.08 
107 0.02 0.01 0.01 0.06 
143 0.00 0.00 0.00 0.00 

 

Figure 9 provides a graphical representation of the change as the mean, standard 

deviation, and range of the estimated RMSE decreases when the size of the sample is 
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reduced.  

 

  Figure 9. Estimated RMSE for small sample sizes for Generalizability Comparison I. 

Research Question 2.  The second research question, “To what extent do the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 

This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 

Only one of the four factors in research question 2 for RMSE had eta-squared 

values that resulted in a medium effect or greater, the directional influence factor. The 

variance in estimated RMSE in theta estimates associated with the directional influence 
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factor was note worthy (η2 = 0.07). The estimated RMSE for directional influence 

towards the lowest rater was higher than the other two directional values as shown in 

Table 22.  

The upper most limit of the lowest rater’s estimated RMSE (0.18) was also 

considerable higher than the other two directional influences as visually displayed in 

Figure 10. 

Table 22    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Directional 

Influence Factor Associated with Generalizability Comparison  I (n=1944) 

Directional 
Influence Mean SD Min Max 

Lowest Rater 0.05 0.03 0.00 0.18 
Average Rater 0.03 0.03 0.00 0.13 
Highest Rater 0.03 0.02 0.00 0.11 

 

  The remaining three factors in research question 2 had variance in estimated 

RMSE in theta estimates that was small and did not exceed the pre-established criteria of 

a medium effect size or greater, the number of raters factor  (η2 = 0.02), the percentage of 

unreliable raters factor (η2 = 0.01), and the magnitude of ‘unreliability’ factor (η2 = 0.00). 
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Figure 10. Estimated RMSE for the directional influences for Generalizability 

Comparison I. 

Mean Absolute Deviation in Generalizability Comparison I 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 

performance standard influence, and the number of items drawn from the larger item set.  
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All three of the factors in research question 1 for MAD had eta-squared values 

that resulted in a medium effect or greater. The variance in estimated MAD in theta 

estimates associated with the item difficulty distributions factor (η2 = 0.07) exceeded the 

pre-established standard. Table 23 displays the mean and standard deviations for the four 

levels of the item difficulty distribution factor. 

Table 23    

MAD Mean, Standard Deviation, Minimum, and Maximum for Item 

Difficulty Distribution Factor Associated with Generalizability 

Comparison  I (n=1458) 

Item Difficulty 
Distribution Mean SD Min Max 

Real Item 0.03 0.02 0.00 0.13 
Sim. SAT Low 0.02 0.02 0.00 0.09 
Sim. SAT 0.02 0.02 0.00 0.10 
Sim. Unif. 0.03 0.02 0.00 0.10 

 
While real item difficulty distribution and the simulated uniform had slightly 

higher MAD means than the other two distributions, one noticeable difference between 

the item difficulty distributions was the higher range of the MAD estimates for the real 

item difficulty distribution (0.13) as opposed to the three simulated distributions as 

shown in Figure 11. 
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Figure 11. Estimated MAD for item difficulty distributions for Generalizability 

Comparison I. 

The variance in estimated MAD in theta estimates associated with the placement 

of the ‘true’ performance standard factor (η2 = 0.07) also exceeded the pre-established 

standard. The estimated mean MAD for an originating theta of -1 was higher (0.03) than 

the other two theta values (0.02) as shown in Table 24. 

In addition to the estimated MAD mean difference among samples, the upper 

most limit of each originating theta value was different with -1 having the highest (0.13) 

of the three values as visually displayed in Figure 12. 
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Table 24    

MAD Mean, Standard Deviation, Minimum, and Maximum for Placement of the 

‘True’ Performance Standard Factor Associated with Generalizability 

Comparison  I (n=1944) 

Originating Theta Mean SD Min Max 
-1 0.03 0.02 0.00 0.13 
0 0.02 0.02 0.00 0.09 
1 0.02 0.02 0.00 0.08 

 

 

Figure 12. Estimated MAD for the placement of the ‘true’ performance standard for 

Generalizability Comparison I. 

The variance in estimated MAD in theta estimates for the number of sample items 

factor had the highest eta-squared value (η2 = 0.63) of any of the MAD effects in 
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Generalizability Comparison I. The estimated mean MAD decreased as the size of the 

sample increased as shown in Table 25. 

Table 25    

MAD Mean, Standard Deviation, Minimum, and Maximum for Number of 

Sample Items Factor Associated with Generalizability Comparison  I (n=972) 

Sample Size Mean SD Min Max 
36 0.05 0.02 0.01 0.13 
47 0.04 0.02 0.01 0.11 
72 0.03 0.01 0.01 0.08 
94 0.02 0.01 0.01 0.06 
107 0.02 0.01 0.01 0.04 
143 0.00 0.00 0.00 0.00 

 

Figure 13 provides a graphical representation of this change as the mean, standard 

deviation, and range of the estimated MAD decreases when the size of the sample is 

reduced.  

Research Question 2.  The second research question, “To what extent will the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 

This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 
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  Figure 13. Estimated MAD for small sample sizes for Generalizability Comparison I. 

Only one of the four factors in research question 2 for MAD had eta-squared 

values that resulted in a medium effect or greater, the directional influence factor. The 

effect size for the estimated MAD in theta estimates associated with the directional 

influence factor was note worthy (η2 = 0.06). The mean estimated MAD for directional 

influence towards the lowest rater was higher than the other two directional values as 

shown in Table 26.  

The upper most limit of the lowest rater’s estimated MAD (0.13) was also 

considerable higher than the other two directional influences as visually displayed in 

Figure 14. 
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Table 26    

MAD Mean, Standard Deviation, Minimum, and Maximum for Directional 

Influence Factor Associated with Generalizability Comparison  I (n=1944) 

Directional 
Influence Mean SD Min Max 

Lowest Rater 0.03 0.02 0.00 0.13 
Average Rater 0.02 0.02 0.00 0.09 
Highest Rater 0.02 0.02 0.00 0.08 

 

   The remaining three factors in research question 2 had an effect size for estimated 

MAD in theta estimates that was small and did not exceed the pre-established criteria of a 

medium effect size or greater, number of raters factor (η2 = 0.01), the percentage of 

unreliable raters factor (η2 = 0.01), and the magnitude of ‘unreliability’ factor (η2 = 0.01). 

 

Figure14. Estimated MAD for the directional influences for Generalizability Comparison 
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I. 

Generalizability Comparison II 

 The second generalizability comparison evaluated the difference between the 

small sample performance estimate and the ‘true’ originating performance estimate. 

Table 27 displays the mean, standard deviation, minimum, and maximum values for each 

of the outcome measures across the 5,832 conditions for Generalizability Comparison II.  

Table 27     

Mean, Standard Deviation, Minimum, and Maximum values for Outcomes 

Associated with Generalizability Comparison II (N=5832) 

 

Outcome Mean SD Min Max 
Bias -0.10 0.41 -1.14 0.96 
RMSE 0.39 0.22 0.08 1.15 
MAD 0.37 0.22 0.07 1.14 

 
 The mean for estimated bias was -0.10 (SD = 0.41) with a range from -1.14 to 

0.96. The mean for estimated RMSE was 0.39 (SD = 0.22) with a range from 0.08 to 1.15 

and the mean for estimated MAD was 0.37 (SD = 0.22) with a range from 0.07 to 1.14. 

Figure 15 is a graphical representation of the distributions for each of the three outcome 

variables for Generalizability Comparison II. 

 Thirty-one conditions had at least one outcome for Generalizability II that was 

equal to -1 or less (bias) or equal to 1 or greater (RMSE, MAD). All thirty-one identified 

conditions had a directional influence towards the lowest rater, an originating theta of 1, 

and a SAT simulated uniform item difficulty distribution as shown in Table 28. 
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Figure 15. Outcome distributions for Generalizability Comparison II 

 The results of the simulation were evaluated using SAS PROC GLM. The 

dependent variables in the model were the three outcome variables, Bias, RMSE, and 

MAD. The seven independent variables were the seven different factors from the 

simulation model. Three different models were evaluated, main effects model, two-way 

interaction model, and three-way interaction model. For the bias outcome, 91.0% of the 

variability was explained by the main effects of the seven simulation factors. This was 

considerable higher than the 19% of variability explained for bias in the main effects 

model for Generalizability Comparison I. In terms of RMSE and MAD outcomes, 73.3% 

and 72.3% of the variability was explained, respectively, by the main effects of the seven 

simulation factors.  
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Table 28       

Conditions for Generalizability II with an Outcome (bias, RMSE, MAD) equal 

to -1 or Less, or 1 or Greater (All Conditions Included Directional Influence = 

Lowest Rater, Originating Theta = 1, Item Difficulty Distribution = SAT 

Simulated Uniform) 

     

Sample Size Number of 
Raters 

Rater 
Reliability 

Fallible 
Raters (%) Bias RMSE MAD 

36 8 .85 75 -1.02 1.04 1.02 
 12 .75 75 -0.99 1.01 0.99 
 12 .85 50 -0.99 1.00 0.99 
 12 .85 75 -1.09 1.10 1.09 
 16 .75 75 -1.04 1.05 1.04 
 16 .85 50 -1.05 1.06 1.05 
 16 .85 75 -1.14 1.15 1.14 
47 12 .85 75 -1.05 1.06 1.05 
 16 .75 75 -1.02 1.03 1.02 
 16 .85 50 -1.02 1.03 1.02 
 16 .85 75 -1.11 1.12 1.11 
72 8 .85 75 -1.00 1.01 1.00 
 12 .85 75 -1.07 1.08 1.07 
 16 .75 75 -1.04 1.05 1.04 
 16 .85 50 -1.04 1.05 1.04 
 16 .85 75 -1.12 1.13 1.12 
94 8 .85 75 -0.99 1.01 0.99 
 12 .85 75 -1.08 1.09 1.08 
 16 .75 75 -1.03 1.04 1.03 
 16 .85 50 -1.04 1.05 1.04 
 16 .85 75 -1.12 1.13 1.12 
107 8 .85 75 -0.99 1.00 0.99 
 12 .85 75 -1.07 1.08 1.07 
 16 .75 75 -1.03 1.04 1.03 
 16 .85 50 -1.03 1.04 1.03 
 16 .85 75 -1.13 1.14 1.13 
143 8 .85 75 -1.00 1.01 1.00 
 12 .85 75 -1.08 1.09 1.08 
 16 .75 75 -1.03 1.04 1.03 
 16 .85 50 -1.04 1.05 1.04 
 16 .85 75 -1.13 1.14 1.13 
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 Table 29 displays the eta-squared values for each of the main effects for 

Generalizability Comparison II. Using the pre-established standard of Cohen’s medium 

effect size criteria (η2 = 0.06), the only note worthy bias main effect was the directional 

influence factor (η2 = 0.84).  

Table 29     

Eta-squared Analysis of the Main Effects of the Factors in the Simulation 

for Generalizability Comparison II 

 

Outcome Bias η2 MAD η2 RMSE η2 
Direct 0.84* 0.57* 0.57* 
Dist 0.03 0.06* 0.07* 
SampleN 0.00 0.00 0.00 
RaterN 0.00 0.01 0.00 
Fallible% 0.00 0.02 0.01 
ρXX 0.00 0.02 0.02 
θmc 0.04 0.05 0.06* 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
 
 In terms of the RMSE, three of the factors had eta-squared values resulting in at 

least a medium effect, directional influence (η2 = 0.57), item difficulty distribution (η2 = 

0.07), and the location of the ‘true’ performance standard (η2 = 0.06). Two factors of 

these same factors had at least a medium effect for the MAD outcome, they were 

directional influence (η2 = 0.57) and item difficulty distribution (η2 = 0.06). Almost all of 

the variability in the bias outcome is explained by the two-way interaction model with 

99.6% of explained variability in the model. The amount of explained variability in the 

RMSE and MAD outcome measures increased to 92.7% and 92.9%, respectively.  
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Table 30 

Eta-square Analysis of the Two-way Interaction Effects of the Factors in 

the Simulation Generalizability Comparison II 

 

Outcome       Bias η2     MAD η2     RMSE η2 
Direct x Dist 0.01 0.06* 0.05 
Direct x SampleN 0.00 0.00 0.00 
Direct x RaterN 0.01 0.01 0.01 
Sample x Dist 0.00 0.00 0.00 
RaterN x Dist 0.00 0.00 0.00 
RaterN x SampleN 0.00 0.00 0.00 
Fallible% x Direct 0.01 0.01 0.01 
Fallible% x Dist 0.00 0.00 0.00 
Fallible% x SampleN 0.00 0.00 0.00 
Fallible% x RaterN 0.00 0.00 0.00 
Fallible% x ρXX 0.00 0.00 0.00 
Fallible% x θmc 0.00 0.00 0.00 
ρXX x Direct 0.01 0.01 0.01 
ρXX x Dist 0.00 0.00 0.00 
ρXX x SampleN 0.00 0.00 0.00 
ρXX x RaterN 0.00 0.00 0.00 
ρXX x θmc 0.00 0.00 0.00 
θmc x Direct 0.03 0.11* 0.10* 
θmc x Dist 0.03 0.01 0.01 
θmc x SampleN 0.00 0.00 0.00 
θmc RaterN 0.00 0.00 0.00 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
 
 Table 30 displays the eta-squared values for each of the two-way interaction 

effects for Generalizability Comparison II. Using the pre-established standard of Cohen’s 

medium effect size criteria (η2 = 0.06), there were no note worthy two-way interactions 

related to bias. In terms of the RMSE, one two-way interaction exceeded the pre-

established threshold; the interaction between the location of the ‘true’ performance 

standard factor and the directional influence factor (η2 = 0.10). This same interaction was 
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also identified for the MAD outcome (η2 = 0.11). The MAD outcome also had a second 

two-way interaction that exceeded the pre-established threshold, the interaction between 

the directional influence factor and the item difficulty distribution factor (η2 = 0.06).With 

almost all of the variability explained in the two-way interaction model, the bias outcome 

only had a modest increase to 99.9% of the variance explained in the three-way 

interaction model. The RMSE and MAD outcomes also had almost all of the variability 

explained in the three-way interaction model with 99.3% and 99.3% of the variability 

explained by the model, respectively. 

 Table 31 displays the eta-squared values for each of the three-way interaction 

effects for Generalizability Comparison II. Using the pre-established standard of Cohen’s 

medium effect size criteria (η2 = 0.06), there were no note worthy three-way interactions 

for the bias outcome measure. The RMSE and MAD outcome measures each had one 

three-way interaction which exceeded the pre-established medium effect threshold. That 

interaction for both outcomes was between the ‘true’ performance standard factor, the 

directional influence factor, and the item difficulty distribution factor (Both RMSE and 

MAD: η2 = 0.06). 

Bias in Generalizability Comparison II 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 
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performance standard influence, and the number of items drawn from the larger item set.  

Table 31     

Eta-square Analysis of the Three-way Interaction Effects of the Factors in the 

Simulation for Generalizability Comparison II 

 

Outcome        Bias η2      MAD η2       RMSE η2 
Direct x RaterN x Dist 0.00 0.00 0.00 
Direct x RaterN x SampleN 0.00 0.00 0.00 
RaterN x SampleN x Dist 0.00 0.00 0.00 
Fallible% x ρXX  x Direct 0.00 0.00 0.00 
Fallible% x ρXX  x Dist 0.00 0.00 0.00 
Fallible% x ρXX  x SampleN 0.00 0.00 0.00 
Fallible% x ρXX  x RaterN 0.00 0.00 0.00 
Fallible% x ρXX  x θmc 0.00 0.00 0.00 
ρXX x θmc x Direct 0.00 0.00 0.00 
ρXX x θmc x Direct x Dist 0.00 0.00 0.00 
ρXX x θmc x Direct x SampleN 0.00 0.00 0.00 
ρXX x θmc x Direct x RaterN 0.00 0.00 0.00 
θmc x Direct x Dist 0.00 0.06* 0.06* 
θmc x Direct x SampleN 0.00 0.00 0.00 
θmc x Direct x RaterN 0.00 0.00 0.00 

* Eta-squared value at or above Cohen’s medium effect size criteria of 0.06 
Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, RaterN = 
number of raters, Fallible% = percentage of fallible raters, ρXX = reliability of fallible raters, and 
θmc=location of the originating theta 
 

None of the three factors in research question 1 for bias resulted in a medium or 

greater effect size for eta-squared. The variance in bias in theta estimates associated with 

the item difficulty distributions factor (η2 = 0.03), the ‘true’ performance standard factor 

(η2 = 0.04), and the number of sample items factor (η2 = 0.00) were all below the pre-

established threshold. 

Research Question 2.  The second research question, “To what extent do the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 
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This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 

Only one of the four factors in research question 2 for bias had eta-squared values 

that resulted in a medium effect or greater, the directional influence factor. In fact, the 

resulting effect size was large (η2 = 0.84). The estimated bias for directional influence 

towards the lowest rater was negative and substantially lower than the other two 

directional values as shown in Table 32. All values of the influence towards the lowest 

rater were negatively bias. Conditions which were equal to -1 or less are located in Table 

28.  All identified conditions had an originating theta of 1 and a SAT simulated uniform 

item difficulty distribution. 

Table 32    

Bias Mean, Standard Deviation, Minimum, and Maximum for Directional 

Influence Factor Associated with Generalizability Comparison  II (n=1944) 

Directional 
Influence Mean SD Min Max 

Lowest Rater -0.57 0.16 -1.14 -0.25 
Average Rater -0.07 0.12 -0.48 0.17 
Highest Rater 0.35 0.20 -0.08 0.96 

 

  The upper most limit of the highest rater’s estimated bias (0.96) was 

considerable higher than the other two directional influences as visually displayed in 

Figure 16. The remaining three factors in research question 2 had variance in estimated 

bias in theta estimates that was small and did not exceed the pre-established criteria of a 

medium effect size or greater, number of raters factor (η2 = 0.00), the percentage of 
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unreliable raters factor (η2 = 0.00), and the magnitude of ‘unreliability’ factor (η2 = 

0.00). 

 

Figure 16. Estimated bias for the directional influences for Generalizability Comparison 

II. 

Root Mean Square Error in Generalizability Comparison II 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 

performance standard influence, and the number of items drawn from the larger item set.  
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Two of the three factors in research question 1 for variance in estimated RMSE 

had eta-squared values that resulted in a medium effect or greater, the item difficulty 

distributions factor and the placement of the ‘true’ performance standard factor. The 

variance in estimated RMSE in theta estimates associated with the item difficulty 

distributions factor (η2 = 0.07) exceeded the pre-established standard. Table 33 displays 

the RMSE descriptive statistics for each of the four levels of the item difficulty 

distribution factor. 

Table 33    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Item 

Difficulty Distribution Factor Associated with Generalizability 

Comparison  II (n=1458) 

Item Difficulty 
Distribution Mean SD Min Max 

Real Item 0.42 0.21 0.11 0.97 
Sim. SAT Low 0.33 0.18 0.08 0.83 
Sim. SAT 0.35 0.19 0.10 0.81 
Sim. Unif. 0.48 0.26 0.10 1.15 

 
While real item difficulty distribution and the simulated uniform had slightly 

higher RMSE means and standard deviations than the other two distributions, one 

noticeable difference between the item difficulty distributions was the higher range of 

the RMSE estimates for the simulated uniform item difficulty distribution as opposed to 

the other three item difficulty distributions as shown in Figure 17. Conditions which 

were equal to 1 or greater are located in Table 28.  All identified conditions had a 

directional influence towards the lowest rater and an originating theta of 1. The item 

difficulty distribution factor was also involved in a three-way interaction that met the 
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pre-established medium effect criteria. This three-way interaction was with the 

placement of the ‘true’ performance standard factor and the directional influence factor 

(η2 = 0.06). This result will be discussed in more detail in the directional influence factor 

section. 

 

Figure 17. Estimated RMSE for item difficulty distributions for Generalizability 

Comparison II. 

The variance in estimated RMSE in theta estimates associated with the placement 

of the ‘true’ performance standard factor (η2 = 0.06) also exceeded the pre-established 

medium effect standard. The estimated mean RMSE for an originating theta of -1 was 

higher (0.47) than the other two estimated mean RMSE values (0.36) as shown in Table 

34. 
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Table 34    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Placement of the 

‘True’ Performance Standard Factor Associated with Generalizability 

Comparison  II (n=1944) 

Originating Theta Mean SD Min Max 
-1 0.47 0.22 0.12 0.97 
0 0.36 0.19 0.08 0.97 
1 0.36 0.23 0.10 1.15 

 
In addition to the estimated RMSE mean difference among samples, the upper 

most limit of each originating theta value was different with 1 having the highest (1.15) 

of the three values as visually displayed in Figure 18. 

 

Figure 18. Estimated RMSE for the placement of the ‘true’ performance standard for 

Generalizability Comparison II. 
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Conditions which were equal to 1 or greater are located in Table 28. All identified 

conditions had a directional influence towards the lowest rater  and a SAT simulated 

uniform item difficulty distribution. 

The placement of the ‘true’ performance standard factor also had a notable two-

way interaction with the directional influence factor (η2 = 0.10) and a three-way 

interaction with the directional influence factor and the item difficulty distribution factor 

(η2 = 0.06). These results will be discussed in more detail in the directional influence 

factor section. The variance in estimated RMSE in theta estimates associated with the 

number of sample items factor was very small (η2 = 0.00) and did not exceed the pre-

established medium effect standard. 

Research Question 2.  The second research question, “To what extent do the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 

This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 

Only one of the four factors in research question 2 for RMSE had eta-squared 

values that resulted in a medium effect or greater, the directional influence factor. The 

variance in estimated RMSE in theta estimates for the directional influence factor had 

the highest eta-squared value (η2 = 0.57) of any of the other factors in Generalizability 

Comparison II. The estimated RMSE for directional influence towards the lowest rater 

was higher than the other two directional values as shown in Table 35.  
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Table 35    

RMSE Mean, Standard Deviation, Minimum, and Maximum for Directional 

Influence Factor Associated with Generalizability Comparison  II (n=1944) 

Directional 
Influence Mean SD Min Max 

Lowest Rater 0.60 0.15 0.28 1.15 
Average Rater 0.19 0.08 0.08 0.50 
Highest Rater 0.39 0.18 0.10 0.97 

   

The upper most limit of the lowest rater’s estimated RMSE (1.15) was also considerably 

higher than the other two directional influences as visually displayed in Figure 19.  

 

Figure 19. Estimated RMSE for the directional influences for Generalizability 

Comparison II. 
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Conditions which were equal to 1 or greater are located in Table 28. All identified 

conditions had an originating theta of 1, and a SAT simulated uniform item difficulty 

distribution. As mentioned previously, the placement of the ‘true’ performance standard 

factor interacted with the directional influences factor (η2 = 0.10). Figure 20 graphically 

displays this two-way interaction. The results suggest that while the directional influence 

towards the lowest and average rater were impacted similarly by the various originating 

theta, the directional influence towards the highest rater was impacted differently. 

 

Figure 20. Estimated RMSE two-way interaction between the placement of the ‘true’ 

performance standard factor and the directional influences factor for Generalizability 

Comparison II. 
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  Table 36 displays the results of the two-way interaction between the placement of 

the ‘true’ performance standard factor and the directional influences factor by displaying 

the estimated RMSE as a function of the placement of the ‘true’ performance standard 

factor and the directional influences factor.   

  In addition to the two-way interaction, the directional influence factor was also 

involved in a three-way interaction with the placement of the ‘true’ performance standard 

factor and the item difficulty distribution factor (η2 = 0.06). This three-way interaction is 

graphically displayed in Figures 21-23 with separate figures for each level of the 

originating theta. 

Table 36    

Estimated RMSE as a Function of  the Placement of the ‘True’ Performance 

Standard Factor and the Directional Influences Factor Associated with 

Generalizability Comparison  II (n=648) 

  Originating Theta  
Directional 
Influence -1 0 1 

Lowest Rater 0.63 0.55 0.61 
Average Rater 0.20 0.15 0.23 
Highest Rater 0.58 0.37 0.23 

 
  When the originating theta is -1, the four item difficulty distributions converge in 

terms of mean RMSE when the direction influence is to the lowest rater. When the 

directional influence is towards the average rater, the real item and simulated uniform 

distributions converge in terms of mean RMSE, while the simulated SAT and simulated 

SAT with lower variance distributions converge at a lower mean RMSE. The relationship 

between item difficulty distributions is even more pronounced when the directional 
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influence is towards the highest rater. 

 

Figure 21. Estimated RMSE interaction between item difficulty distribution factor and 

the directional influences factor at originating theta=-1 for Generalizability Comparison 

II. 

When the originating theta is 0, the four item difficulty distributions have the least 

amount of convergence in terms of mean RMSE when the directional influence is to the 

lowest rater. The simulated SAT and simulated SAT with lower variance distributions 

have the most similar mean RMSE as compared to the other item difficulty distributions. 

The simulated uniform distribution has the highest mean RMSE at all directional 

influences except for the highest rater influence where the real item difficulty 

distribution has the highest mean RMSE. 
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When the originating theta is 1, the four item difficulty distributions also have the 

least amount of convergence in terms of mean RMSE when the directional influence is 

to the lowest rater. Again, the simulated SAT and simulated SAT with lower variance 

distributions have the most similar mean RMSE as compared to the other item difficulty 

distributions. 

 

Figure 22. Estimated RMSE interaction between item difficulty distribution factor and 

the directional influences factor at originating theta=0 for Generalizability Comparison 

II. 

The simulated uniform distribution also continues to have the highest mean 

RMSE at all directional influences except for the highest rater influence where the real 

item difficulty distribution again has the highest mean RMSE. However, the mean 
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RMSE for the simulated uniform distribution is impacted different from the other three 

item difficulty distributions as it has even more separation when the originating theta is 

1. 

The remaining three factors in research question 2 all had effect sizes for the 

estimated RMSE in theta estimates that were small and did not exceed the pre-

established criteria of a medium effect size or greater, the number of raters factor (η2 = 

0.00), the percentage of unreliable raters factor (η2 = 0.01), and the magnitude of 

‘unreliability’ factor (η2 = 0.02). 

 

Figure 23. Estimated RMSE interaction between item difficulty distribution factor and 

the directional influences factor at originating theta=1 for Generalizability Comparison 

II. 
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Mean Absolute Deviation in Generalizability Comparison II 

Research Question 1.  The first research question, “To what extent do the 

characteristics and the relationship between the two item sets impact the ability to 

generalize minimal competency estimates?” focuses on the characteristics and the 

relationship between the two item sets. This question is specifically addressed by the 

distribution of item difficulties in the larger item set, the placement of the ‘true’ 

performance standard influence, and the number of items drawn from the larger item set.  

Only one of the three factors in research question 1 for variance in estimated 

MAD had an eta-squared value that resulted in a medium effect or greater, the item 

difficulty distributions factor. The variance in estimated MAD in theta estimates 

associated with the item difficulty distributions factor (η2 = 0.06) exceeded the pre-

established standard. Table 37 displays the mean and standard deviations for the four 

levels of the item difficulty distribution factor. 

Table 37    

MAD Mean, Standard Deviation, Minimum, and Maximum for Item 

Difficulty Distribution Factor for Associated with Generalizability 

Comparison  II (n=1458) 

Item Difficulty 
Distribution Mean SD Min Max 

Real Item 0.39 0.21 0.08 0.96 
Sim. SAT Low 0.31 0.18 0.07 0.81 
Sim. SAT 0.32 0.19 0.08 0.80 
Sim. Unif. 0.45 0.27 0.08 1.14 

 
While real item difficulty distribution and the simulated uniform distribution had 

slightly higher MAD means and standard deviations than the other two distributions, one 
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noticeable difference between the item difficulty distributions was the higher range of 

the MAD estimates for the simulated uniform item difficulty distribution as opposed to 

the other three simulated distributions as shown in Figure 24.  

 

Figure 24. Estimated MAD for item difficulty distributions for Generalizability 

Comparison II. 

Conditions which were equal to 1 or greater are located in Table 28.  All 

identified conditions had a directional influence towards the lowest rater and an 

originating theta of 1. The item difficulty distribution factor was also involved in a two-

way interaction with the directional influence factor (η2 = 0.06) and a three-way 

interaction which also included the placement of the ‘true’ performance standard factor 

(η2 = 0.11). These results will be discussed in more detail in the directional influence 
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factor section. 

The variance in estimated MAD in theta estimates associated with the placement 

of the ‘true’ performance standard factor (η2 = 0.05) did not exceed the pre-established 

medium effect standard, though the placement of the ‘true’ performance standard factor 

did have a notable two-way interaction with the directional influence factor (η2 = 0.11). 

This result will be discussed in more detail in the directional influence factor section. 

The variance in estimated MAD in theta estimates associated with the number of sample 

items factor was very small (η2 = 0.00) and also did not exceed the pre-established 

medium effect standard. 

Research Question 2.  The second research question, “To what extent do the 

characteristics of the standard setting process impact the ability to generalize minimal 

competency estimates?” focuses on the characteristics of the standard setting process. 

This question is specifically addressed by the number of raters, the percentage and 

magnitude of ‘unreliable’ raters, and the impact of group dynamics and discussion 

during the later rounds of the standard setting process. 

Only one of the four factors in research question 2 for variance in estimated MAD 

had eta-squared values that resulted in a medium effect or greater, the directional 

influence factor. The variance in estimated MAD in theta estimates associated with the 

directional influence factor had the highest eta-squared value (η2 = 0.57) of any of the 

other factors in Generalizability Comparison II. The estimated MAD for directional 

influence towards the lowest rater was higher than the other two directional values as 

shown in Table 38. 
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Table 38    

MAD Mean, Standard Deviation, Minimum, and Maximum for Directional 

Influence Factor Associated with Generalizability Comparison  II (n=1944) 

Directional 
Influence Mean SD Min Max 

Lowest Rater 0.57 0.16 0.25 1.14 
Average Rater 0.16 0.08 0.07 0.48 
Highest Rater 0.37 0.18 0.08 0.96 

   

 

Figure 25. Estimated MAD for the directional influences for Generalizability 

Comparison II.  

The upper most limit of the lowest rater’s estimated MAD (1.14) was also 

considerable higher than the other two directional influences as visually displayed in 

Figure 25.  Conditions which were equal to 1 or greater are located in Table 28.  All 
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identified conditions had an originating theta of 1 and a SAT simulated uniform item 

difficulty distribution. As mentioned previously, the directional influences factor 

interacted with placement of the ‘true’ performance standard factor (η2 = 0.11) and the 

item difficulty distribution factor (η2 = 0.06). 

Figure 26 graphically displays the two-way interaction between the placement of 

the ‘true’ performance standard factor and the directional influences factor. The results 

suggest that while the directional influence towards the lowest and average rater was 

impacted similarly by the various originating theta, the directional influence towards the 

highest rater was impacted differently. 

 

Figure 26. Estimated MAD two-way interaction between the placement of the ‘true’ 

performance standard factor and the directional influences factor for Generalizability 
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Comparison II. 

 Table 39 displays the estimated MAD as a function of the placement of the ‘true’ 

performance standard factor and the directional influences factor. Figure 27 provides the 

graphical representation of this two-way interaction between the item difficulty 

distribution and the directional influences factor. 

Table 39    

Estimated MAD as a Function of the Placement of the ‘True’ Performance 

Standard Factor and the Directional Influences Factor Associated with 

Generalizability Comparison  II (n=648) 

  Originating Theta  
Directional 
Influence -1 0 1 

Lowest Rater 0.59 0.52 0.60 
Average Rater 0.16 0.12 0.20 
Highest Rater 0.56 0.34 0.20 

 
The results suggest that while the directional influence towards the lowest and 

average rater were impacted similarly by the various item difficulty distributions (with 

the uniform difficulty distribution having the largest mean MAD), the directional 

influence towards the highest rater was impacted differently with the real item 

distribution moving away from the remaining three item difficulty distribution grouping. 

Table 40 also includes the results of the interaction between the item difficulty 

distribution factor and the directional influences factor.  The directional influence factor 

was also involved in a three-way interaction with the placement of the ‘true’ performance 

standard factor and the placement of the ‘true’ performance standard factor (η2 = 0.06). 
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Figure 27. Estimated MAD two-way interaction between the item difficulty distribution 

and the directional influences factor for Generalizability Comparison II.   

Table 40    

Estimated MAD as a Function of the Item Difficulty Distribution Factor and the 

Directional Influences Factor Associated with Generalizability Comparison  II 

(n=486) 

 Item Difficulty Distribution 
Directional 
Influence Real Item SAT Sim SAT Sim 

Low Uniform 

Lowest Rater 0.53 0.54 0.49 0.72 
Average Rater 0.14 0.14 0.12 0.25 
Highest Rater 0.50 0.29 0.31 0.37 
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 Figures 28-30 display the results of this three-way interaction for each level of the 

originating theta. When the originating theta is -1, the four item difficulty distributions 

converge in terms of mean MAD when the direction influence is to the lowest rater. 

 

Figure 28. Estimated MAD interaction between item difficulty distribution factor and the 

directional influences factor at originating theta=-1 for Generalizability Comparison II. 

When the directional influence is towards the average rater, the real item and 

simulated uniform distributions converge in terms of mean MAD, while the simulated 

SAT and simulated SAT with lower variance distributions converge at a lower mean 

MAD. The relationship between item difficulty distributions is even more pronounced 

when the directional influence is towards the highest rater. When the originating theta is 

0, the four item difficulty distributions have the least amount of convergence in terms of 
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mean MAD when the directional influence is to the lowest rater. The simulated SAT and 

simulated SAT with lower variance distributions have the most similar mean MAD as 

compared to the other item difficulty distributions. The simulated uniform distribution 

has the highest mean MAD at all directional influences except for the highest rater 

influence where the real item difficulty distribution has the highest mean MAD. 

 

Figure 29. Estimated MAD interaction between item difficulty distribution factor and the 

directional influences factor at originating theta=0 for Generalizability Comparison II. 

When the originating theta is 1, the four item difficulty distributions also have the 

least amount of convergence in terms of mean MAD when the directional influence is to 

the lowest rater. Again, the simulated SAT and simulated SAT with lower variance 

distributions have the most similar mean MAD as compared to the other item difficulty 
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distributions. The simulated uniform distribution also continues to have the highest 

mean MAD at all directional influences except for the highest rater influence where the 

real item difficulty distribution again has the highest mean MAD. However, the mean 

MAD for the simulated uniform distribution is impacted different from the other three 

item difficulty distributions as it has even more separation when the originating theta is 

1. 

 

Figure 30. Estimated MAD interaction between item difficulty distribution factor and the 

directional influences factor at originating theta=1 for Generalizability Comparison II. 

The remaining three factors in research question 2 had effect sizes for variance in 

estimated MAD in theta estimates that was small and did not exceed the pre-established 

criteria of a medium effect size or greater, the number of raters factor (η2 = 0.01), the 
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percentage of unreliable raters factor (η2 = 0.02), and the magnitude of ‘unreliability’ 

factor (η2 = 0.02). 

Actual Standard Setting Results Comparison  

Results from an actual Angoff standard setting process were used as a ‘pseudo’ 

population. Samples were then drawn using a similar stratified random sampling 

methodology and comparisons were made to the results of the simulation study. 

Comparisons were made between an actual 112-item Angoff dataset (provided by S. G. 

Sireci) and the simulation results. The actual Angoff dataset contained 13 raters. One 

rater was randomly selected and removed in order to match the simulation parameters 

for rater size. The 112-item set contained one-parameter IRT values. The mean b-

parameter was 0.01 (SD = 0.91) with a minimum value of -3.83 and a maximum value of 

1.61. 

The ability to generalize the performance standard was evaluated using a model 

similar to that used in the simulation. Since the items were calibrated under a one-

parameter IRT model, only the difficulty parameters could be used for the stratification. 

The individual item difficulty parameters (b-values) were separated into three groups 

and stratified random samples were extracted based on one of the three item difficulty 

groupings. This ensured representative groups of item difficulty in the drawn samples. 

The sample sizes were based on the sample size factor used in the simulation. To match 

the characteristics of the simulation design and ensure stable results, one thousand 

samples were taken from each sample size. The three outcomes (bias, RMSE, and MAD) 

were calculated for each sample size across the one thousand samples. 
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Bias in Actual Angoff Dataset Comparison 

 Table 41 displays the estimated bias for each sample size as well as the 

descriptive statistics for the bias outcome from the simulation results for Generalizability 

Comparison I. The estimated bias calculated from the actual results falls within the 

ranges from the simulation study at each sample size. For example, the estimated bias for 

a sample size of 25% (0.011) falls within the range of estimated bias from the simulation 

results (-0.022 to 0.014).  

Table 41    

Bias for Small Sample Size in the Actual Angoff Dataset 

Simulation Resultsb Sample Size Actual 
Resultsa Mean SD Min Max 

25% 0.011 -0.003 0.006 -0.022 0.014 
33% 0.009 0.002 0.005 -0.015 0.024 
50% 0.006 0.001 0.004 -0.014 0.014 
66% 0.003 0.000 0.002 -0.007 0.008 
75% -0.004 0.001 0.002 -0.005 0.007 
100% 0.000 0.000 0.000 0.000 0.000 

a n=1,000 replications at each sample size 

bn=972 conditions at each sample size (1,000 replications each condition) 
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Figure 31. Estimated bias for the small sample sizes for actual Angoff and simulated 

datasets.  

The estimated bias calculated from the actual results displays a reduction in the 

estimated bias as the sample size increases as shown in Figure 31. 

RMSE in Actual Angoff Dataset Comparison 
 
 Table 42 displays the estimated RMSE for each sample size as well as the 

descriptive statistics for the RMSE outcome from the simulation results for 

Generalizability Comparison I. The estimated RMSE calculated from the actual results 

falls when in the range from the simulation study. For example, the estimated RMSE for 

a sample size of 50% (0.06) falls within the range of estimated bias from the simulation 

results (0.01 to 0.10). 
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Table 42    

RMSE for Small Sample Size in the Actual Angoff Dataset 

Simulation Resultsb Sample Size Actual 
Resultsa Mean SD Min Max 

25% 0.10 0.07 0.03 0.02 0.18 
33% 0.08 0.06 0.02 0.02 0.15 
50% 0.06 0.04 0.02 0.01 0.10 
66% 0.04 0.03 0.01 0.01 0.08 
75% 0.03 0.02 0.01 0.01 0.06 
100% 0.00 0.00 0.00 0.00 0.00 

a n=1,000 replications at each sample size 

bn=972 conditions at each sample size (1,000 replications each condition) 

 
The estimated RMSE calculated from the actual results displays a similar reduction in the 

estimated RMSE as the sample size increases as shown in Figure 32. 

 
Figure 32. Estimated RMSE for the small sample sizes for actual Angoff and simulated 

datasets. 
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MAD in Actual Angoff Dataset Comparison 

Table 43 displays the estimated MAD for each sample size as well as the 

descriptive statistics for the MAD outcome from the simulation results for 

Generalizability Comparison I. The estimated MAD calculated from the actual results 

falls when in the range from the simulation study. For example, the estimated MAD for a 

sample size of 75% (0.03) falls within the range of estimated bias from the simulation 

results (0.01 to 0.04). Similarly to the RMSE results, the estimated MAD calculated from 

the actual results displays a reduction that is very similar to the simulations study results. 

This reduction in the estimated MAD as the sample size increases is graphically 

displayed in Figure 33. 

Table 43    

MAD for Small Sample Size in the Actual Angoff Dataset 

Simulation Resultsb Sample Size Actual 
Resultsa Mean SD Min Max 

25% 0.08 0.05 0.02 0.01 0.13 
33% 0.06 0.04 0.02 0.01 0.11 
50% 0.04 0.03 0.01 0.01 0.08 
66% 0.03 0.02 0.01 0.01 0.06 
75% 0.03 0.02 0.01 0.01 0.04 
100% 0.00 0.00 0.00 0.00 0.00 

a n=1,000 replications at each sample size 

bn=972 conditions at each sample size (1,000 replications each condition) 
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Figure 33. Estimated MAD between the small sample sizes for actual Angoff and 

simulated datasets. 

Results Summary 

 The results were evaluated individually for each generalizability comparison. The 

first generalizability comparison evaluated the difference between the small sample 

performance estimate and the performance estimate derived from the complete 143-item 

set. The second generalizability comparison evaluated the difference between the small 

sample performance estimate and the ‘true’ originating performance estimate. Each 

generalizability comparison section was evaluated by the study outcome measures (bias, 

mean absolute deviation, and root mean square error) and the corresponding research 

questions. The two research questions relate to the extent to which various factors impact 

the ability to generalize minimal competency estimates. The first research question 

involved those factors related to the characteristics and the relationship between the two 
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item sets. The second research question involved those factors related to the 

characteristics of the standard setting process. Finally, the simulation results were 

compared to an existing set of 112 Angoff values from an actual standard setting study.  

Results were analyzed by computing eta-squared values to estimate the proportion 

of variability in each of the outcomes (bias, RMSE, and MAD) associated with each 

factor in the simulation design. Critical factors were identified using eta-squared (η2) to 

estimate the proportion of variance associated with each effect. Cohen (1977, 1988) 

proposed descriptors for interpreting eta-squared values; (a) small effect size: η2 = .01; 

(b) medium effect size: η2 = .06, and (c) large effect size: η2 = .14. Critical factors were 

determined as those that had an eta-squared effect size of medium or greater.  

Results Summary for Generalizability Comparison I 

Table 44 displays the eta-squared medium and large effect sizes for all three 

outcomes in Generalizability Comparison I. For the bias outcome, the only factor of the 

seven in Generalizability Comparison I that had a medium or larger eta-squared effect 

size was the sample size factor from research question 1.  

This factor also interacted with the item difficulty distribution factor which 

resulted in a large effect. The MAD and RMSE outcomes had the same pattern of 

medium and large eta-squared effects. The medium effects included the item difficulty 

distribution factor and the location of the originating performance standard factor from 

research question 1, and the directional influence factor from research question 2. 
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Table 44     

Eta-squared Analysis of the Medium and Large Effect Sizes of the Factors in 

the Simulation for Generalizability Comparison I 

 Bias MAD RMSE 
Outcome η2 η2 η2 
Direct  Medium Medium 
Dist  Medium Medium 
SampleN Large Large Large 
θmc  Medium Medium 
SampleN x Dist Large   

Note. Direct = directional influence, Dist = item difficulty distribution, SampleN = sample size, and 
θmc=location of the originating theta 
 

The sample size factor from research question 1 had the only large eta-squared 

effect size of the study factors. Neither MAD nor RMSE had any interaction effects that 

were note worthy. 

Results Summary for Generalizability Comparison II 

Table 45 displays the eta-squared medium and large effect sizes for all three 

outcomes in Generalizability Comparison II. For the bias outcome, the directional 

influence factor from research question 2 was the only one of the seven study factors 

that had a medium or larger eta-squared effect size. The eta-squared effect size for the 

directional influence factor was large. 

The RMSE outcome had medium eta-squared effects for the item difficulty 

distribution factor and the location of the originating performance standard factor from 

research question 1. The MAD outcome had a medium eta-squared effect for the item 

difficulty distribution factor. Both RMSE and MAD had a large eta-squared effect for 

the directional influence factor from research question 2. RMSE and MAD also had 
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combinations of two-way and three-way interactions between the item difficulty 

distribution factor, the location of the originating performance standard factor, and 

directional influence factor. 

Table 45     

Eta-squared Analysis of the Medium and Large Effect Sizes of the Factors in 

the Simulation for Generalizability Comparison II 

 

 Bias MAD RMSE 
Outcome η2 η2 η2 
Direct Large Large Large 
Dist  Medium Medium 
θmc   Medium 
Direct x Dist  Medium  
θmc x Direct  Medium Medium 
θmc x Direct x Dist  Medium Medium 

Note. Direct = directional influence, Dist = item difficulty distribution, and θmc=location of the originating 
theta 
 
Results Summary for the Actual Angoff Dataset Comparison 

Results from an actual Angoff standard setting process were used as a ‘pseudo’ 

population. Samples were then drawn using a similar stratified random sampling 

methodology and comparisons were made to the results of the simulation study. 

Comparisons were made between an actual 112-item Angoff dataset (provided by S. G. 

Sireci) and the simulation results. The ability to generalize the performance standard was 

evaluated using a model similar to that used in the simulation. The sample sizes were 

based on the sample size factor used in the simulation. To match the characteristics of 

the simulation design and ensure stable results, one thousand samples were of each 

sample size. The three outcomes (bias, RMSE, and MAD) were calculated for each 

sample size across the one thousand samples. The estimated outcome measures 
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calculated from the actual results all fell when in the range from the simulation study. 

The outcome measures from the actual results also displayed similar reductions to the 

simulation study as the samples increased in size. 
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Chapter Five:  

Conclusions 

 

Summary of the Study 

While each phase of the test development process is crucial to the validity of the 

examination, one phase tends to stand out among the others; the standard setting process. 

It has continually received the most attention in the literature among any of the technical 

issues related to criterion-referenced measurement (Berk, 1986). Little research attention, 

however, has been given to generalizing the resulting performance standards. In essence, 

can the estimate of minimal competency that is established with one subset of multiple 

choice items be applied to the larger set of items from which it was derived? The ability 

to generalize performance standards has profound implications both from a psychometric 

as well as a practicality standpoint.  

The standard setting process is a time-consuming and expensive endeavor. It 

requires the involvement of number of professionals both in the context of participants 

such as subject matter experts (SME) as well as those involved in the test development 

process such as psychometricians and workshop facilitators. The standard setting process 

can also be cognitively taxing on participants (Lewis et al., 1998). Generalizing 

performance standards may improve the quality of the standard setting process. By 

reducing the number of items that a rater needs to review, the quality of their ratings 

might improve as the raters are “less fatigued” and have “more time” to review the 
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smaller dataset (Ferdous & Plake, 2005, p. 186). Reducing the time it takes to conduct 

the process also translates into a savings of time and money for the presenting agency as 

well as the raters, who are generally practitioners in the profession.   

While IRT-based models such as the Bookmark and other variations have been 

created to addresses some of these the deficiencies, research suggests that these newer 

IRT-based methods have inadvertently introduced other flaws.  In a multimethod study of 

standard setting methodologies by Buckendahl et al. (2000), the Bookmark standard 

setting method did not produce levels of confidence and comfort with the process that 

were very different than the popular Angoff method. Reckase (2006a) conducted a 

simulation study of standard setting processes using Angoff and Bookmark methods 

which attempted to recover the originating performance standard in the simulation model. 

He found that error-free conditions during the first round of Bookmark cut scores were 

statistically lower than the simulated cut scores (Reckase, 2006a). The Bookmark 

estimates of the performance standard from his research study were ‘uniformly 

negatively statistically biased’ (Reckase, 2006a, p. 14). These results are consistent with 

other Bookmark research (Green et al., 2003; Yin & Schulz, 2005). While the IRT-based 

standard setting methods do use a common scale, they all have a potential issue with 

reliability. Raters are only given one opportunity per round to determine an estimate of 

minimal competency as they select a single place between items rather than setting 

performance estimates for each individual item as in the case of the Angoff method.  

Setting a performance standard with the Angoff method on a smaller sample of 

items and accurately applying it to the larger test form may address some of these 
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standard setting issues (e.g., cognitively taxing process, high expense, time consuming). 

In fact, it may improve the standard setting process by limiting the number of items and 

the individual rater decisions. It also has the potential to save time and money as fewer 

individual items would be used in the process.  

The primary purpose of this research was to evaluate the extent to which a single 

minimal competency estimate derived from a subset of multiple choice items would 

generalize to the larger item set. There were two primary goals for this research 

endeavor: (1) evaluating the degree to which the characteristics of the two item sets and 

their relationship impact the ability to generalize minimal competency estimates, and (2) 

evaluating the degree to which the characteristics of the standard setting process impact 

the ability to generalize minimal competency estimates.  

First, the characteristics and the relationship between the two item sets were 

evaluated in terms of their effect on generalizability. This included the distribution of 

item difficulties in the larger item set, the placement of the ‘true’ performance standard, 

and the number of items randomly drawn from the larger item set. Second, the 

characteristics of the standard setting process were evaluated in terms of their effect on 

generalizability: specifically, elements such as the number of raters, the ‘unreliability’ of 

individual raters in terms of the percentage of unreliable raters and their magnitude of 

‘unreliability’, and the influence of group dynamics and discussion.  

 Individual item-level estimates of minimal competency were simulated using a 

Monte Carlo approach. This type of approach allowed the control and manipulation of 

research design factors. Every simulation study begins with various decision points. 
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These decision points represent the researcher’s attempt to ground the simulation process 

in current theory and provide a foundation for the creation of ‘real life’ data and results 

that can be correctly generalized to specific populations. The initial decision points 

involved in this simulation are the type of standard setting method, the type of IRT 

model, and the number of items evaluated. The Angoff method was selected over the 

Bookmark method as the standard setting method for this study due to its popularity of 

use (Ferdous & Plake, 2005), stronger ability to replicate the performance standard 

(Reckase, 2006a), and greater amount of general research as well as research on the 

ability to generalize performance standards. The IRT method selected was based on the 

characteristics of the items. Multiple choice items were used and the three-parameter IRT 

model which incorporates a pseudo guessing parameter was the most appropriate IRT 

model for this type of item. The decision to use a large number of items for the larger 

item set was based on the research questions. There would be less economic value in 

dividing a smaller number of items into even smaller samples.  

 The simulation took place in two distinct steps: data generation and data analysis. 

The data generation step consisted of simulating the standard setting participant’s 

individual estimates of minimal competency and calculating the resulting item-level 

estimates of minimal competency. The second step or data analysis step of the simulation 

process consisted of forming a smaller item set by drawing a stratified random sample 

from the larger item set. The resulting performance standard established with this smaller 

item set was then compared to the performance standard from the larger item set as well 

as the ‘true’ performance standard used to originally simulate the data. The Monte Carlo 
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study involved seven factors. The simulation factors were separated into two areas: those 

related to the characteristics and relationship between the item sets, and those related to 

the standard setting process. The characteristics and the relationship between the two 

item sets included three factors: (a) the item difficulty distributions in the larger 143-item 

set (‘real’ item distribution, simulated SAT item distribution, simulated SAT item 

distribution with reduced variance, and simulated uniform difficulty), (b) location of the 

‘true’ performance standard (θmc = -1.0, 0, 1.0), (c) number of items randomly drawn in 

the sample (36, 47, 72, 94, 107, and the full item set). The characteristics of the standard 

setting process included four factors: (a) number of raters (8, 12, 16), (b) percentage of 

unreliable raters (25%, 50%, 75%), (c) magnitude of ‘unreliability’ in unreliable raters 

(ρXX = .65, .75, .85.), and (d) and the directional influence of group dynamics and 

discussion (lowest rater, highest rater, average rater).  

 The ability to ‘adequately’ generalize the performance was evaluated in terms of 

the differences between the performance standard derived with the larger item set and the 

performance standard derived with the smaller subset of multiple choice items. The 

difference between the originating performance standard and the performance standard 

derived with the smaller subset of items was also examined. The aggregated simulation 

results were evaluated in terms of the location (bias) and the variability (mean absolute 

deviation, root mean square error) in the estimates. The examining proportion of variance 

associated with each effect (η2) was evaluated using Cohen’s medium effect size criteria, 

η2 = 0.06.  
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Research Questions 

1. To what extent do the characteristics and the relationship between the two item sets 

impact the ability to generalize minimal competency estimates? 

a. To what extent does the distribution of item difficulties in the larger item set 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the placement of the ‘true’ performance standard influence 

the ability to generalize the estimate of minimal competency? 

c. To what extent does the number of items drawn from the larger item set 

influence the ability to generalize the estimate of minimal competency? 

2. To what extent do the characteristics of the standard setting process impact the ability to 

generalize minimal competency estimates? 

a. To what extent does the number of raters in the standard setting process 

influence the ability to generalize the estimate of minimal competency? 

b. To what extent does the percentage of ‘unreliable’ raters influence the ability to 

generalize the estimate of minimal competency? 

c. To what extent does the magnitude of ‘unreliability’ in the designated 

‘unreliable’ raters influence the ability to generalize the estimate of minimal 

competency? 

d. To what extent do group dynamics and discussion during the later rounds of the 

standard setting process influence the ability to generalize the estimate of 

minimal competency? 
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Summary of Results 

Generalizability Comparison I 

For the bias outcome, the only factor of the seven in Generalizability Comparison 

I that had a medium or larger eta-squared effect size was the sample size factor from 

research question 1. This factor also interacted with the item difficulty distribution factor 

which resulted in a large effect. The MAD and RMSE outcomes had the same pattern of 

medium and large eta-squared effects. The medium effects included the item difficulty 

distribution factor and the location of the originating performance standard factor from 

research question 1, and the directional influence factor from research question 2. The 

sample size factor from research question 1 had the only large eta-squared effect size of 

the study factors. Neither MAD nor RMSE had any interaction effects that were note 

worthy. 

Generalizability Comparison II 

The directional influence factor from research question 2 was the only one of the 

seven study factors that had a medium or larger eta-squared effect size. The eta-squared 

effect size for the directional influence factor was large. The RMSE outcome had 

medium eta-squared effects for the item difficulty distribution factor and the location of 

the originating performance standard factor from research question 1. The MAD 

outcome had a medium eta-squared effect for the item difficulty distribution factor. Both 

RMSE and MAD had a large eta-squared effect for the directional influence factor from 

research question 2. RMSE and MAD also had combinations of two-way and three-way 

interactions between the item difficulty distribution factor, the location of the originating 
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performance standard factor, and directional influence factor. 

Actual Angoff Dataset Comparison 

Results from an actual Angoff standard setting process were used as a ‘pseudo’ 

population. Samples were then drawn using a similar stratified random sampling 

methodology and comparisons were made to the results of the simulation study. 

Comparisons were made between the minimal competency estimates derived from the 

simulation results and those derived from an actual 112-item Angoff dataset (provided 

by S. G. Sireci). The ability to generalize the performance standard was evaluated using 

a model similar to that used in the simulation. The sample sizes were based on the 

sample size factor used in the simulation. To match the characteristics of the simulation 

design and ensure stable results, one thousand samples were taken from each sample 

size. The three outcomes (bias, RMSE, and MAD) were calculated for each sample size 

across the one thousand samples. The outcome measures calculated from the actual 

results were all within the range of the simulation study results. The outcome measures 

from the actual results also displayed similar reductions in variance as the sample size 

increased. 

Discussion 

Previous research studies related to using subsets of items to set performance 

standards have only been conducted on existing Angoff datasets. Little or no previous 

research exists evaluating the extent to which various standard setting factors impact the 

generalizability of performance standards. This simulation study sought to explore these 

various factors within the standard setting process and their impact on generalizability. 
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Two different generalizability comparisons were made as a result of the study. The first 

generalizability comparison evaluated the difference between the small sample 

performance estimate and the performance estimate derived from the complete 143-item 

set. The second generalizability comparison evaluated the difference between the small 

sample performance estimate and the ‘true’ originating performance estimate. Because 

of the uniqueness of each of the generalizability comparisons, each will be discussed 

separately as they relate to the research questions and their associated study factors and 

then differences will be compared at the end of the section. 

Generalizability Comparison I 

Three factors were associated with the characteristics and the relationship 

between the two item sets as stated in research question 1. All three factors were 

postulated to impact the ability to generalize minimal competency estimates between the 

small sample performance estimate and the performance estimate derived from the 

complete 143-item set. These three factors were the distribution of item difficulties in 

the larger item set, the placement of the ‘true’ performance standard, and the number of 

items drawn from the larger item set.  

It was hypothesized that item difficulty distributions with a smaller variance in 

item difficulty parameters will generalize better than item difficulty distributions with a 

larger variance.  The study results suggest that there is some value to this hypothesis. 

While little bias was present in the item difficulty factor of the simulation study, the 

variability in theta estimates (RMSE and MAD) was very noticeable. The mean RMSE 

(0.025) was the smallest in the simulated SAT Low item difficulty distribution (lower 
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variance in item difficulty parameters). This item difficulty distribution also had the 

lowest variability in item difficulty parameters (SD = 0.70). This suggests that the tighter 

the item difficulty distribution, the better the generalizability of performance estimates. 

Conversely, the item difficulty distribution with the largest variability in difficulty 

parameters, the simulated SAT uniform distribution (SD = 1.69), had the highest mean 

RMSE (0.044) of the four item difficulty distributions.   

In terms of location of the ‘true’ performance standard, it was suggested that a ‘true’ 

performance standard which is closer to the center of the item difficulty distribution will 

generalize better than a placement further away. The simulations study results also suggest 

that this hypothesis has some merit. While little bias was present in the location of the ‘true’ 

performance factor, the variability (RMSE and MAD) in theta estimates was very noticeable. 

Of the three originating theta values, an originating theta value of 1 had the lowest mean 

RMSE (0.027) and lowest range of RMSE values (0.111) of the three originating theta 

values. The mean item difficulty parameters (b-parameter) for the four item difficulty 

distributions were -0.01(Simulated SAT Low), -0.07 (Simulated SAT), 0.09 (Simulated SAT 

Uniform), and 0.44 (Real Item). While a strong interaction between the originating theta 

factor and the item difficulty distribution factor was not present, this could explain why an 

originating theta of 1 had a lower mean RMSE than an originating theta of -1. An originating 

theta of 0 had the second lowest mean RMSE (0.031) of the three originating theta values.  

It was also suggested that the larger the number of sample items drawn from the 

143-item sample the better the generalizability of the estimate of minimal competency. 

This was true in the study both in terms of the bias and the variability (RMSE and MAD) 
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in theta estimates. In fact, this factor had the largest outcome measure effect sizes of the 

seven study factors in Generalizability Comparison I. The results of the simulation study 

suggest that the larger the sample size the less bias and variability of theta estimates. This 

result is consistent with the current literature (Coraggio, 2007; Ferdous & Plake, 2005, 

2007; Sireci et al., 2000). The number of sample items factor also interacted with the 

item difficulty distribution factor. The ability to generalize performance estimates 

increased as the sample size increased, but not at the same rate for all four item difficulty 

distributions. The item difficulty distribution that was impacted the most was the SAT 

Uniform distribution which interestingly also had the most variability (SD = 1.69) in item 

difficulty parameters (b-parameters). 

Four factors were associated with the characteristics of the standard setting 

process as stated in research question 2. All four factors were postulated to impact the 

ability to generalize minimal competency estimates between the small sample 

performance estimate and the performance estimate derived from the complete 143-item 

set. These four factors were the number of raters, the percentage of ‘unreliable’ raters, 

magnitude of ‘unreliability’ in the designated ‘unreliable’ raters, and the group dynamics 

and discussion during the second round of the standard setting process.  

It was hypothesized that the larger the numbers of raters in the standard setting 

process the better the generalizability of the estimate of minimal competency. This was 

based on the literature suggesting that at least 10 and ideally 15 to 20 should participate 

(Brandon, 2004). The three levels in this study were selected to be representative and at 

the same time economical based on the nature of the research topic. The number of raters 
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factor in the study did not produce any notable results in terms of the bias and variability 

(RMSE and MAD) of theta estimates. 

It was also suggested that the consistency of raters and magnitude of consistency 

would impact the generalizability of the performance estimates. While this is also 

suggested in the literature (Schultz, 2006; Shepard, 1995), the results of this study did not 

support this hypothesis. None of these rater related factors produced notable results in 

terms of the bias and variability (theta) of theta estimates. This included the percentage of 

‘unreliable’ raters and the magnitude of unreliability in the fallible raters. 

The group dynamics and discussion during the second round of the standard 

setting process did produce noticeable results in the study. It was suggested that group 

dynamics and discussion that influence the raters towards the center of the rating 

distribution would generalize better than group dynamics and discussion that influence 

the raters towards the outside of the rating distribution. Fitzpatrick (1989) had suggested 

that a group polarization effect that occurs during the discussion phase of the Angoff 

workshop and Livingston (1995) had reported that this effect was towards the mean 

rating. The results of this study suggest that the directional influence towards the highest 

rater had best generalizability of theta estimates. The directional influence towards the 

highest rater had the lowest mean RMSE (0.027) and lowest range of RMSE values 

(0.109). While it was hypothesized that the directional influence towards the average 

rater would have the best generalizability of theta estimates, the reason for the slight 

advantage in the directional results towards the highest rater is not immediately apparent. 

Further research on the issue of the impact of directional influence should be conducted 
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to investigate this outcome. The directional influence towards the average rater was a 

very close second with a mean RMSE of 0.032.  

Generalizability Comparison II 

Three factors were associated with the characteristics and the relationship 

between the two item sets as stated in research question 1. All three factors were 

postulated to impact the ability to generalize minimal competency estimates between the 

small sample performance estimate and the ‘true’ originating performance estimate. 

These three factors were the distribution of item difficulties in the larger item set, the 

placement of the ‘true’ performance standard, and the number of items drawn from the 

larger item set.  

It was hypothesized that item difficulty distributions with a smaller variance in 

item difficulty parameters will generalize better than item difficulty distributions with a 

larger variance. The study results suggest that this hypothesis may be accurate for 

Generalizability Comparison II as well as Generalizability Comparison I. While little 

bias was present in the item difficulty factor of the simulation study, the variability 

(RMSE and MAD) in theta estimates was very noticeable. The mean RMSE was the 

smallest (0.33) in the simulated SAT with low item difficulty variance. This item 

difficulty distribution also had the lowest variability in item difficulty parameters (SD = 

0.70). Conversely, the item difficulty distribution with the largest variability in difficulty 

parameters, the SAT Uniform distribution (SD = 1.69), had the highest mean RMSE 

(0.48).  The item difficulty distribution also had two note-worthy interactions, one with 

the directional influence factor, and one with the directional influence factor and the 
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originating theta factor. In both cases, the SAT Uniform distribution displayed less 

generalizability of performance estimates than the other four item difficulty 

distributions. 

In terms of location of the ‘true’ performance standard, it was also suggested that a 

placement of the ‘true’ performance standard closer to the center of the item difficulty 

distribution will generalize better than a placement further away. The simulation study 

results also suggest that this hypothesis has some merit. While little bias was present in the 

location of the ‘true’ performance factor of the simulation study, the variability (RMSE) in 

theta estimates was very noticeable. Of the three originating theta values, an originating theta 

value of 0 had the lowest mean RMSE (0.36) and lowest standard deviation of RMSE (0.19) 

of the three originating theta values. As mentioned earlier, there was an interaction between 

the originating theta factor and the item difficulty distribution factor. The mean item 

difficulty parameters (b-parameter) for the four item difficulty distributions were -

0.01(Simulated SAT Low), -0.07 (Simulated SAT), 0.09 (Simulated SAT Uniform), and 0.44 

(Real Item). All four item difficulty distributions center around an originating theta of 0 with 

a slight skewness towards an originating theta of 1. An originating theta of 1 had the second 

lowest mean RMSE (0.39) with a standard deviation of RMSE (0.23). 

Regarding the number of items drawn, it was hypothesized that the larger the 

number of items drawn the better the generalizability of the estimate of minimal 

competency. The results of this study did not support this hypothesis in Generalizability 

Comparison II. The sample size factor did not produce any notable results in terms of the 

bias and the variability (RMSE and MAD) of theta estimates. This factor was very 
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noteworthy in Generalizability Comparison I for all three outcome measures, when 

comparing the generalizability between the small sample and the full 143-item set. 

However, this generalizability comparison was between the small sample and the 

originating or ‘true’ theta. Little research exists on the concept of a true’ theta and 

researchers are only able to determine the ‘true’ originating theta in simulation studies. 

Some researchers even argue the existence of a ‘true’ originating theta (Schultz, 2006; 

Wang et al., 2003). One possible reason for this difference in results between the 

generalizability comparisons is that other factors (such as the directional influence factor) 

may have accounted for such large shares of the explained variance in the outcome 

measures that they essentially drown out the impact of the sample size factor in 

Generalizability Comparison II. 

Four factors were associated with the characteristics of the standard setting 

process as stated in research question 2. All four factors were postulated to impact the 

ability to generalize minimal competency estimates between the small sample 

performance estimate and the ‘true’ originating performance estimate. These four factors 

were the number of raters, the percentage of ‘unreliable’ raters, the magnitude of 

‘unreliability’ in the designated ‘unreliable’ raters, and the group dynamics and 

discussion during the second round of the standard setting process. 

It was hypothesized that the larger the numbers of raters in the standard setting 

process the better the generalizability of the estimate of minimal competency. While the 

literature suggested minimum and recommended levels of the number of raters (Brandon, 

2004), the three levels used in this study (8, 12, and 16) did not produce any notable 
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results in terms of the bias and variability (RMSE and MAD) of theta estimates for 

Generalizability Comparison II. It was also hypothesized that the consistency of raters 

and magnitude of consistency would impact the generalizability of the performance 

estimates. While this is also suggested in the literature (Schultz, 2006; Shepard, 1995), 

the results of this study did not support this hypothesis for Generalizability Comparison 

II. As with the results of the first generalizability comparison, none of the rater related 

factors produced notable results in terms of the bias and variability (RMSE and MAD) of 

theta estimates. 

It was also suggested that group dynamics and discussion that influence the raters 

towards the center of the rating distribution would generalize better than group dynamics 

and discussion that influence the raters towards the outside of the rating distribution. The 

simulation study results suggest that this is an accurate hypothesis as the directional 

influence towards the average rater had the lowest mean bias (-0.07) and mean RMSE 

(0.19). This is consistent with the rater regression to the mean effect discussed in the 

literature (Livingston, 1995). Directional influence towards the lowest rater was 

negatively bias (-0.57), while directional influence towards the highest rater was 

positively bias (0.35). This result was different than the result for the other 

generalizability comparison. This factor had the largest outcome measure effect sizes of 

the seven study factors in Generalizability Comparison II.  

Limitations 

Based on the design of the study, there are a number of limitations to consider in 

relation to this research study. The simulation method implemented in this study provides 
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control of a number of factors intended to investigate performance in specific situations. 

This benefit of control in simulation studies is also a limitation as it tends to limit the 

generalizability of the study findings. Thus, the seven controlled factors (a) the item 

difficulty distributions, (b) location of the ‘true’ performance standard, (c) number of 

items randomly drawn in the sample, (d) number of raters, (e) percentage of unreliable 

raters, (f) magnitude of ‘unreliability’ in unreliable raters, and (g) directional influence of 

group dynamics and discussion dictate the types of standard setting environments to 

which the study results can be generalized. Another inherent limitation of the simulation 

study is the number of levels within each factor. These levels were selected to provide a 

sense of the impact of each factor. They were not intended to be an exhaustive 

representation of all the possible levels within each factor. 

Another restriction on the ability to generalize the study results is related to the 

study’s initial decision points. While the researcher attempted to ground the simulation 

process in current theory and provide a foundation for the creation of ‘real life’ data in 

order to generalize to specific populations, the initial decision points also provided 

limitations. For example, the Angoff method was selected as the standard setting model. 

The use of other models such as the Bookmark method may produce very different 

results. The other two decisions points of IRT method (three-parameter) and larger item 

sample size (143 items) also provide similar limitations on the generalizability of study 

results.  

The final consideration of limited generalizability is the level of rater subjectivity 

involved in the standard setting process. While this study has contained a number of 
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factors to simulate the standard setting process, additional factors affecting the 

subjectiveness of individual raters such as content biases, knowledge of minimal 

competency, and fatigue may also play a role in determining the final passing standard. 

These issues would likely affect the other raters in the standard setting process as well.  

Implications  

Implications for Standard Setting Practice 

The intent of this research was to evaluate the model of setting performance 

standards with partial items sets. This line of research has important implications for 

standard setting practice as using a subset of multiple choice items to set the passing 

standard has the potential to save time and money as well as improve the quality of the 

standard setting process. This could be accomplished through limiting the number of 

items and the number of individual rater decisions required for the process. The quality 

of individual ratings might also improve as the raters are “less fatigued” and have “more 

time” to review the items (Ferdous & Plake, 2005, p. 186). Financial savings could be 

redirected to improving other areas of the test development process such as validation.  

 This simulation research made two comparisons of generalizability. The first 

addressed the differences between the performance standard derived with the larger item 

set and the performance standard derived with the smaller subset of multiple choice 

items. This first comparison has implications that are directly apparent for practitioners 

as they generally start with the larger set of items from which to subset. The implications 

for the second comparison may not be as immediately apparent, but may be just as 

important. It was the difference between the ‘true’ originating performance standard and 
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the performance standard derived with the smaller subset of multiple choice items. The 

‘true’ performance standard is never known in practice and some researchers have even 

questioned its existence (Schultz, 2006; Wang et al., 2003). It was simulated as a factor 

in this study and has direct implications in terms of the ability of a standard setting model 

to reproduce the intended standard (Reckase, 2006a, 2006b). 

 The simulation results suggest that the model of using partial item sets may have 

some merit for practitioners as the resulting performance standard estimates may 

generalize to those set with the larger item set. The results for the comparison between 

the large and small item sets indicate large effect sizes (η2) for the sample size factor both 

in terms of bias and variability (RMSE and MAD). The results also suggest that sample 

sizes between 50% and 66% of the larger item set may be adequate. The estimated mean 

bias for the sample size of 50% was 0.001 (SD=0.004) with an RMSE of 0.04 (SD=0.02), 

while the mean bias for the sample size of 66% was less than 0.000 (SD=0.002) with an 

RMSE of 0.03 (SD=0.01). This finding is consistent with non-simulated research 

(Ferdous & Plake, 2005, 2007; Sireci et al., 2000). Interestingly enough the second 

generalizability comparison, which evaluated the difference between the small sample 

performance estimate and the ‘true’ originating performance estimate, did not produce 

any note worthy results in the outcome measures. This suggests that the smallest sample 

and the largest sample generalized to the ‘true’ originating performance standard equally 

as well. These results do not seem very intuitive and may require additional research. 

This simulation study by design has explored the conditions that may impact the 

generalizability of performance standards. Previous research studies related to using 
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subsets of items to set performance standards have only been conducted on existing 

datasets. This simulation study sought to explore various factors within the standard 

setting process and their specific impact on generalizability. This included characteristics 

related to the item sets as well as those related to the standard setting process. In fact, the 

simulation results suggest that some elements of the process should be carefully 

considered before attempting to set standards with subsets of items. Elements such as the 

type of the item difficulty distribution in the larger item set (or original test form); the 

direction of the group influence during the group discussion phase; and the location of 

the ‘true’ performance standard may adversely impact generalizability.  

The simulation results suggest that the item difficulty distribution can impact the 

ability to generalize performance standards. The simulation study results suggest that 

item difficulty distributions with a tighter variance such as those created for certification 

and licensure examinations have better generalizability of performance standards. A test 

of this nature would be designed to measure a more narrow range of abilities. Ideally, an 

examination or bank of items for mastery testing would consist of items with item 

difficulty parameters around the performance standard (Embretson & Reise, 2000). This 

would provide a maximum amount of information (or conversely a low standard error) 

around the performance standard. While the specific issues of computer adaptive testing 

(CAT) are outside the realm of this paper (see van der Linden & Glas, 2000 for more 

detail), different item selection, scoring (i.e., ML, MAP, EAP), and termination 

procedures may require a wider range of item difficulty parameters than reflected by the 

SAT simulated item difficulty distribution with low variance used in this study. This item 
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difficulty distribution factor had medium effect sizes (η2) in terms of variability (RMSE 

and MAD) for both generalizability comparisons. This factor also interacted with the 

sample size factor in Generalizability Comparison I as well as the directional influence 

factor and the location of the originating performance standard in Generalizability 

Comparison II.  

The simulation results also suggest that directional influence by raters during the 

discussion round can impact the ability to generalize performance standards. This result 

is consistent with current research. Some researchers have suggested a group-influenced 

biasing effect of regression to the mean (Livingston, 1995) during group discussion. 

Other researchers have suggested a group polarization effect (Fitzpatrick, 1989) in which 

a moderate group position becomes more extreme in that same direction after group 

interaction and discussion (Myers & Lamm, 1976). Group discussion has resulted in 

lower rating variability, and this lower variability has been traditionally used by 

practitioners as one measure of standard setting quality. Lower variability, however, may 

not guarantee valid results (McGinty, 2005). One question that has been periodically 

explored in the literature is the need for the discussion round in the standard setting 

process. The impact of the directional influence towards the lowest and highest raters in 

Generalizability Comparison II suggests the need to revisit this question. This directional 

influence factor had medium effect sizes (η2) in terms of variability (RMSE and MAD) 

for Generalizability Comparison I and large effect sizes (η2) in terms of bias and 

variability (RMSE and MAD) for Generalizability Comparison II. The results suggest 

that directional influence while being an important consideration in terms of generalizing 
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across item sets may have an even bigger implication in terms of the ability of the 

standard setting process to replicate the intended originating performance standard. This 

factor also interacted with the item difficulty distribution factor and the location of the 

originating performance standard factor in Generalizability Comparison II. 

In addition to the item difficulty distribution and directional influence factors, the 

simulation results suggest that the location of the originating performance standard factor 

may also impact the ability to generalize performance standards. The simulation study 

results suggest that a ‘true’ originating performance standard which is closer to the center 

of the item difficulty distribution will generalize better than a placement which is further 

away. This factor had medium effect sizes (η2) in terms of variability (RMSE and/or 

MAD) for both generalizability comparisons. As previously mentioned, this factor 

interacted with the item difficulty distribution factor and the directional influence factor 

in Generalizability Comparison II.  

This issue of a ‘true’ performance standard is controversial among standard 

setting researchers. One way to operationalize this concept in terms of standard setting 

practice is analogize it to a ‘true’ score in test theory. Normally, one would assume that 

the location of the ‘true’ performance standard for a given program would not change 

over time just as ‘true’ score would not change in test theory. A practitioner could 

carefully consider the location of the performance standards from previous standard 

settings. The average of these previous performance standards could then be considered a 

‘true’ performance standard and taken into consideration when creating new test forms 

and conducting future standard settings. 
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An interesting outcome of this study was the lack of noteworthy results regarding 

the number and fallibility of standard setting participants. The number of raters within the 

standard setting process did not seem significant in terms of impacting the 

generalizability of the performance standard. Perhaps there is some validity to Livingston 

and Zieky’s (1982) suggestion that as few as five participants may be adequate to set 

performance standards. The study results also suggest that truly random rater error has 

little impact on the ability to generalize performance standards at least in terms of the 

levels used within this simulation study. The issue of non-random rater error was not as 

extensively explored in this study with the exception of the factor related to directional 

influence during the discussion phase of the standard setting process. 

While the findings of this study are consistent with other non-simulated 

generalizability research (Ferdous & Plake, 2005, 2007; Sireci et al., 2000), questions of 

policy must be explored before implementing this partial item set standard setting model 

in a ‘high-stakes’ testing environment. There have been few partial item set strategies 

used operationally (see NAGB, 1994 for example). Questions regarding the ‘fairness’ of 

setting performance standards with only partial item sets have been raised by other 

researchers (Ferdous & Plake, 2007). Hambleton suggested that performance standards 

set with only partial item sets would never be acceptable under today’s environment of 

increased accountability (R. Hambleton, NCME session, April 10, 2007). Other ‘high 

stake’ examination models have been established using partial item sets such as computer 

adaptive testing (CAT) in which examinees are only presented partial item sets before a 

determination of competency. CAT models have withstood judicial legislation. CAT 
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assessment models gained ‘acceptance’ after several decades of research (Embretson & 

Reise, 2000). It is hoped that this study will contribute to the current limited body of 

research study on setting performance standards with partial item sets. 

Suggestions for Future Research  

Future research should be conducted with additional combinations of raters with 

different levels of fallibility to see if these rater-related results are consistent across 

studies. Another suggestion for future research is to conduct standard setting research 

with other item difficulty models such as items calibrated with different IRT models 

(one-parameter, two-parameter, etc.) and p-value models. It would be interesting to see if 

these other models produced comparable results. Clearly, the very use of IRT is a 

limitation as IRT models require substantial quantities of examinee responses in order to 

calibrate items. Many smaller testing programs do not have a sufficient test incident level 

(responses) required for IRT.  

Further research on different types of item difficulty distributions would also be 

of interest. Clearly, while there were some differences in the mean and standard deviation 

of the b-parameter distributions used in this study, the slight differences impacted the 

results of the study. In addition, it would be interesting to further investigate the impact 

of directional rater bias. This study evaluated systematic directional influence towards 

another rater. Other directional bias error models should be considered. Such as models 

that allow an individual rater to be randomly influenced. For example, influenced 

towards the ‘highest’ rater on one item and then influenced towards the ‘lowest’ rater on 

another item. It might also be interesting to evaluate the impact of a single or group of 
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raters that had a predetermined preference towards making the final performance 

standard either high or low. Lastly, it would be interesting to conduct similar studies with 

other types of standard setting methods such as the Bookmark method to see if they 

would produce comparable results. 

Conclusions Summary 

 The primary purpose of this research was to evaluate the extent to which a single 

minimal competency estimate derived from a subset of multiple choice items would be 

generalizable to the larger item set. The limited research on the subject of generalizability 

of performance standards has concentrated on evaluating existing datasets. This study 

sought to add to the current body of research on the subject in two ways: 1) by examining 

the issue through the use of simulation and 2) by examining factors within the standard 

setting process that may impact the ability to generalize performance standards.  

The simulation results suggest that the model of setting performance standards 

with partial item sets may have some merit as the resulting performance standard 

estimates may generalize to those set with larger item sets. This finding was consistent 

with the other non-simulated research (Ferdous & Plake, 2005, 2007; Sireci et al., 2000). 

The simulation results also suggest that elements such as the item difficulty distribution 

in the larger item set (or original test form) and the impact of directional group influence 

during the group discussion phase of the process can impact generalizability. For 

example, item difficulty distributions with a tighter variance and directional influence 

during the discussion phase that was towards the average rater had the most favorable 

results though there was often an interaction with the location of the originating 
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performance standard. 

The simulation method implemented in this study provided control of a number of 

factors intended to investigate performance in specific situations. However, this benefit 

of control in simulation studies can also be a limitation. The seven controlled factors and 

their associated levels dictate the types of standard setting environments to which the 

study results can be generalized. The study’s initial decision points selected as an attempt 

to ground the simulation process in current theory also created limitations. The results of 

this study can only be generalized to similar environments (Angoff standard setting 

method, larger item sample sizes, and three-parameter IRT models). The final 

consideration of limited generalizability is the level of rater subjectivity involved in the 

standard setting process. While this study has contained a number of factors to simulate 

the standard setting process, additional factors affecting the subjectiveness of individual 

raters such as content biases, knowledge of minimal competency, and fatigue may also 

play a role in determining the final passing standard.  

The number and fallibility of standard setting participants in this study had little 

impact in terms of generalizability of performance standards. Future research should be 

conducted with additional combinations of raters and different levels of fallibility to see 

if these results are consistent across studies. Future research should also be conducted 

with other item difficulty models such as items calibrated with other IRT models (one-

parameter, two-parameter, etc.) and p-value models. This study evaluated directional 

influence towards another rater. It might be interesting to evaluate the impact of a single 

or group of raters that had a predetermined preference towards making the final 
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performance standard either high or low. Lastly, it would be interesting to conduct 

similar studies with other types of standard setting methods (e.g., Bookmark method). 
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Appendix A:  Deriving the Individual Item Performance Estimates 

Individual item performance standard estimates ( ˆ
ijmcθ ) are established by transforming 

the probability of a correct response to the “log-odds”. The transformation (see 

Hambleton & Swaminathan, p. 57-60; Hambleton, Swaminathan, & Rodgers, p. 83) 

begins with 
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The mean Angoff value for a given item (
iγ ) is then substituted for ( )θiP  and ( )θiQ  is 

converted to 1- 
iγ  as shown. The resulting equation as proposed by Coraggio (2005) for 

the theta-cut using the three parameter IRT model is as shown. 
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Appendix B:  Example SAS code 

options pageno=1; 
libname SS_SIM 
'C:\Users\jcoraggio\Documents\Classes\Dissertation\SAS'; 
 
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ 
Simulation program for Angoff Standard Setting 
Created by JTC  
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++; 
 
*Clear Old dataset; 
proc datasets nolist; delete Phase4_Stand_Rep; 
*options mprint; 
 
/*******************************************************************
****      
IRT Real Item Parameters from Mark Reckase's EMIP Paper  
[With A/1.702 adjustment] 
********************************************************************
***/ 
data IRT; 
Input bank Name$ A B C; 
 
 
datalines ; 
1 item1     0.743  -0.299   0.186 
2 item2     1.224  0.816    0.000 
3 item3     0.617  0.376    0.255 
4 item4     0.643  -0.003   0.244 
5 item5     0.857  0.267    0.191 
6 item6     0.934  1.077    0.127 
7 item7     0.788  -0.149   0.000 
8 item8     0.518  0.241    0.213 
9 item9     0.894  0.939    0.127 
10 item10    1.154  0.977    0.216 
11 item11    0.416  -1.232   0.217 
12 item12    0.459  0.352    0.180 
13 item13    0.462  -2.597   0.201 
14 item14    0.495  -1.470   0.164 
15 item15    0.669  -1.047   0.186 
16 item16    0.457  -0.063   0.238 
17 item17    0.222  1.199    0.248 
18 item18    0.652  -1.119   0.207 
19 item19    0.304  -0.096   0.000 
20 item20    0.335  -0.045   0.270 
21 item21    0.699 -0.469   0.194 
22 item22    0.853 0.777    0.215 
23 item23    0.635 -0.069   0.246 
24 item24    1.077 0.914    0.000 
25 item25    0.799 0.556    0.202 
26 item26    0.435 0.594    0.187 
27 item27    0.713 0.427    0.133 
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28 item28    1.118 0.868    0.216 
29 item29    0.537 -0.973   0.197 
30 item30    0.981 0.269    0.258 
31 item31    0.897 -0.803   0.251 
32 item32    0.632 -1.151   0.237 
33 item33    0.512 -0.129   0.000 
34 item34    1.071 1.404    0.182 
35 item35    0.541 0.350    0.157 
36 item36    0.381 -0.573   0.256 
37 item37    0.438 -0.033   0.158 
38 item38    0.574 -0.695   0.240 
39 item39    1.020 1.993    0.291 
40 item40    0.489 1.842    0.262 
41 item41    0.900 0.699    0.303 
42 item42    0.481 0.986    0.294 
43 item43    1.035 1.783    0.081 
44 item44    0.886 0.241    0.173 
45 item45    0.961 1.236    0.000 
46 item46    0.655 1.623    0.204 
47 item47    0.441 -0.817   0.226 
48 item48    0.439 -0.207   0.162 
49 item49    0.488 1.023    0.129 
50 item50    0.553 -0.251   0.148 
51 item51    0.966 1.144    0.287 
52 item52    0.353 -0.604   0.191 
53 item53    0.410 -1.265   0.000 
54 item54    0.406 -0.810   0.000 
55 item55    0.900 0.795    0.214 
56 item56    0.805 -0.025   0.234 
57 item57    1.313 1.639    0.000 
58 item58    0.419 -1.691   0.209 
59 item59    0.622 -0.195   0.308 
60 item60    0.352 -1.130   0.195 
61 item61    0.582 0.702    0.126 
62 item62    0.867 1.224    0.130 
63 item63    0.672 1.642    0.000 
64 item64    0.752 -0.573   0.000 
65 item65    0.544 -1.264   0.000 
66 item66    0.668 2.673    0.047 
67 item67    0.468 0.145    0.170 
68 item68    0.404 -1.340   0.197 
69 item69    1.351 0.654    0.296 
70 item70    0.330 0.789    0.277 
71 item71    0.527 -0.165   0.160 
72 item72    0.685 -0.292   0.178 
73 item73    0.346 3.227    0.221 
74 item74    0.385 0.256    0.000 
75 item75    0.478 -0.220   0.198 
76 item76    0.556 0.560    0.169 
77 item77    0.407 2.318    0.291 
78 item78    0.410 1.485    0.000 
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79 item79    0.808 0.811    0.000 
80 item80    0.462 0.264    0.223 
81 item81    0.392 -0.320   0.195 
82 item82    0.252 1.224    0.202 
83 item83    1.058 1.305    0.134 
84 item84    0.357 0.079    0.219 
85 item85    0.498 3.316    0.110 
86 item86    0.108 -3.851   0.211 
87 item87    0.645 1.159    0.165 
88 item88    0.991 1.488    0.220 
89 item89    0.518 -0.072   0.177 
90 item90    0.543 0.711    0.239 
91 item91    0.937 1.829    0.241 
92 item92    0.854 1.588    0.106 
93 item93    0.844 0.582    0.271 
94 item94    1.004 1.597    0.040 
95 item95    0.944 -0.035   0.132 
96 item96    1.554 1.416    0.201 
97 item97    0.528 0.994    0.172 
98 item98    0.462 -0.280   0.141 
99 item99    0.518 0.580    0.123 
100 item100   0.415 0.115    0.198 
101 item101   0.513 0.379    0.151 
102 item102   1.272 1.373    0.170 
103 item103   0.428 0.674    0.186 
104 item104   0.504 -0.250   0.161 
105 item105   0.674 2.782    0.000 
106 item106   0.752 2.100    0.000 
107 item107   0.599 1.231    0.259 
108 item108   0.534 0.731    0.000 
109 item109   0.765 1.495    0.176 
110 item110   1.039 2.000    0.000 
111 item111   0.864 0.062    0.000 
112 item112   0.585 -0.343   0.000 
113 item113   0.730 0.472    0.232 
114 item114   0.467 0.013    0.180 
115 item115   0.906 0.310    0.234 
116 item116   0.810 0.978    0.206 
117 item117   0.641 0.597    0.314 
118 item118   1.084 0.899    0.089 
119 item119   0.675 1.754    0.000 
120 item120   1.047 1.854    0.000 
121 item121   0.616 -0.241   0.162 
122 item122   0.614 0.894    0.111 
123 item123   1.694 1.409    0.085 
124 item124   0.607 -0.293   0.211 
125 item125   0.540 -0.035   0.122 
126 item126   0.565 0.226    0.256 
127 item127   0.394 0.544    0.169 
128 item128   0.600 -0.688   0.210 
129 item129   0.602 -1.065   0.184 
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130 item130   0.585 -1.253   0.158 
131 item131   1.181 1.192    0.278 
132 item132   0.667 0.798    0.185 
133 item133   0.597 -0.677   0.199 
134 item134   0.466 0.301    0.290 
135 item135   0.654 1.075    0.193 
136 item136   0.567 1.378    0.000 
137 item137   0.961 0.966    0.100 
138 item138   0.645 1.816    0.233 
139 item139   0.664 0.292    0.155 
140 item140   0.501 0.703    0.162 
141 item141   0.559 0.735    0.250 
142 item142   0.814 1.060    0.151 
143 item143   1.086 1.465    0.136 
 ; 
 
data IRT; 
Set IRT; 
If A < 0.527 then IRTA = 1;Else IRTA = 2; 
If A > 0.743 then IRTA = 3; 
If B < -0.033 then IRTB = 10;Else IRTB = 20; 
If B > 0.899 then IRTB = 30; 
 
IRT_LEVEL = IRTA+IRTB; 
 
proc sort data = IRT; by B; 
 
/*******************************************************************
**** 
    Performance Estimate Generation Macro 
********************************************************************
***/ 
 
%macro SS_SIM (Rep=1000, Rel=0, Per=10, Theta=1, Direct = 2, Dist = 
Real, Cond = 1,RaterN = 12); 
 
proc printto log = log; 
run; 
 
%put %sysfunc(datetime(),datetime20.3).....................Rep=&Rep 
Rel=&Rel Per=&Per Theta=&Theta Direct=&Direct Dist=&Dist, 
Cond=&Cond); 
 
*+-----------------------+ 
  Turn off the log window 
 +-----------------------+; 
proc printto log = junk; 
run; 
 
*+--------------------------+ 
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  Turn off the output window 
 +--------------------------+; 
proc printto print = junk2; 
run; 
 
%Let Var1 = 36; 
%Let Var2 = 47; 
%Let Var3 = 72; 
%Let Var4 = 94; 
%Let Var5 = 107; 
%Let Var6 = 143; 
%Let Dim_Var = 6; 
 
/*******************************************************************
****  
 Parameters  
  Rep = Replications  
  Rel = Rater Reliability (XXXXX10.0 approx .90XXXXX, 12.5 
                      approx .85, 17.5                    approx 
.75, 21.0 approx .65) 
  Per = Percentage of Unreliable Raters (25%, 50%, 75%) 
  Theta = 'True' Originating theta_mc (-1, 0, 1) 
********************************************************************
***/ 
 
%do Rep = 1 %to &Rep; 
 
%do I = 1 %to &Dim_Var.; 
 
data IRT; 
set IRT; 
number = _n_; 
theta_mc = symget('Theta'); 
 
e=(EXP(-1.7*A*(theta_mc-B))); 
e=round (e,.001); 
function = C+SUM((1-C)/(1+e)); 
Grand_Item = Function;*Grand Mean plus Item Main Effect; 
*proc print data=IRT; 
 
/* Datacheck*/ 
proc means N Mean Std var MIN MAX SKEW KURT data = IRT noprint; 
var Grand_Item; 
output out = Grand mean = Grand_mean std = Grand_std; 
 
data Grand; 
set Grand; 
call symput('Grand_mean', Grand_mean);  /* Create global grand_mean 
variable */  
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/*******************************************************************
**** 
    ITEM MAIN EFFECT   Phase 1 
********************************************************************
***/ 
 
Data Phase1; 
set IRT; 
 
Grand_mean = &Grand_mean; 
Item_main = Grand_Item - &Grand_mean; 
Rater_main = 0; 
Rater_Item = 0; 
e=0; 
 
Rater1 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater1 GT 100 then Rater1= 100;If Rater1 LT 1 
then Rater1= 1; 
Rater2 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater2 GT 100 then Rater2= 100;If Rater2 LT 1 
then Rater2= 1; 
Rater3 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater3 GT 100 then Rater3= 100;If Rater3 LT 1 
then Rater3= 1; 
Rater4 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater4 GT 100 then Rater4= 100;If Rater4 LT 1 
then Rater4= 1; 
Rater5 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater5 GT 100 then Rater5= 100;If Rater5 LT 1 
then Rater5= 1; 
Rater6 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater6 GT 100 then Rater6= 100;If Rater6 LT 1 
then Rater6= 1; 
Rater7 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater7 GT 100 then Rater7= 100;If Rater7 LT 1 
then Rater7= 1; 
Rater8 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater8 GT 100 then Rater8= 100;If Rater8 LT 1 
then Rater8= 1; 
Rater9 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater9 GT 100 then Rater9= 100;If Rater9 LT 1 
then Rater9= 1; 
Rater10 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater10 GT 100 then Rater10= 100;If Rater10 
LT 1 then Rater10= 1; 
Rater11 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater11 GT 100 then Rater11= 100;If Rater11 
LT 1 then Rater11= 1; 
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Rater12 = round ((100*(Grand_Mean + Item_main + Rater_main + 
Rater_Item + e)),1);If Rater12 GT 100 then Rater12= 100;If Rater12 
LT 1 then Rater12= 1; 
 
 
Diff = Max(of Rater1-Rater12) - Min(of Rater1-Rater12); 
Stdev = round (std(Rater1, Rater2, Rater3, Rater4, Rater5, Rater6, 
Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
Rater_Avg = round (mean(Rater1, Rater2, Rater3, Rater4, Rater5, 
Rater6, Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
 
* Natural Log Check; 
NLogData = ((Rater_Avg*.01)-C)/(1-(Rater_Avg*.01)); 
If NLogData LE 0 Then NLogData = .01; 
Theta_Cal = (log(NLogData)+(1.7*A*B))/(1.7*A); 
 
Phase = 1; 
 
Rep = symget('Rep'); 
Rel = symget('Rel'); 
Per = symget('Per'); 
Direct = symget('Direct'); 
theta_mc = symget('Theta'); 
 
*proc print noobs data=Phase1; 
*Var Theta_mc Bank A B C Grand_mean Rater1 Rater2 Rater3 Rater4 
Rater5 Rater6 Rater7 Rater8 Rater9 Rater10 Rater11 Rater12 Stdev 
Rater_Avg Theta_Cal; 
 
*Create True Datasets to check reliability; 
/* 
Data True_Check; 
set Phase1; 
tRater1 = Rater1; 
tRater2 = Rater2; 
tRater3 = Rater3; 
tRater4 = Rater4; 
tRater5 = Rater5; 
tRater6 = Rater6; 
tRater7 = Rater7; 
tRater8 = Rater8; 
tRater9 = Rater9; 
tRater10 = Rater10; 
tRater11 = Rater11; 
tRater12 = Rater12; 
Keep tRater1 tRater2 tRater3 tRater4 tRater5 tRater6 tRater7 tRater8 
tRater9 tRater10 tRater11 tRater12; 
*/ 
 
/* Datacheck*/ 
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*proc means N Mean Std var MIN MAX SKEW KURT data = Phase1; 
*var Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Theta_cal; 
 
/* Get Phase1 Standard */  
proc means data = Phase1 noprint; 
 var Rater_Avg Theta_cal; 
 output out = Phase1_Stand median = medianT mean = meanT std = stdT; 
 
/* Create Rater Differences*/ 
data Rater_Effect; 
array RE[*] RE1- RE12; 
do I = 1 To 12; 
RE [I] = 0 + (6.8 * rannor(0));          
End; 
call symput('RE1', RE1);  
call symput('RE2', RE2);  
call symput('RE3', RE3); 
call symput('RE4', RE4); 
call symput('RE5', RE5); 
call symput('RE6', RE6); 
call symput('RE7', RE7); 
call symput('RE8', RE8); 
call symput('RE9', RE9); 
call symput('RE10', RE10); 
call symput('RE11', RE11); 
call symput('RE12', RE12); 
 
proc print data = Rater_Effect; 
run; 
 
/*******************************************************************
********************************** 
    RATER MAIN EFFECT Phase 2 
********************************************************************
**********************************/ 
Data Phase2; 
set IRT; 
 
Grand_mean = &Grand_mean; 
Item_main = Grand_Item - &Grand_mean; 
Rater_main = 0; 
Rater_Item = 0; 
e=0; 
 
/* Rater Main Effect*/  
Rater_main1 = (.01*(&RE1));  
Rater_main2 = (.01*(&RE2));  
Rater_main3 = (.01*(&RE3));  
Rater_main4 = (.01*(&RE4));  
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Rater_main5 = (.01*(&RE5)); 
Rater_main6 = (.01*(&RE6));  
Rater_main7 = (.01*(&RE7));  
Rater_main8 = (.01*(&RE8));  
Rater_main9 = (.01*(&RE9));  
Rater_main10 = (.01*(&RE10));  
Rater_main11 = (.01*(&RE11));  
Rater_main12 = (.01*(&RE12));  
 
 
Rater1 = round ((100*(Grand_Mean + Item_main + (Rater_main1) + 
Rater_Item + e)),1);If Rater1 GT 100 then Rater1= 100;If Rater1 LT 1 
then Rater1= 1; 
Rater2 = round ((100*(Grand_Mean + Item_main + (Rater_main2) + 
Rater_Item + e)),1);If Rater2 GT 100 then Rater2= 100;If Rater2 LT 1 
then Rater2= 1; 
Rater3 = round ((100*(Grand_Mean + Item_main + (Rater_main3) + 
Rater_Item + e)),1);If Rater3 GT 100 then Rater3= 100;If Rater3 LT 1 
then Rater3= 1; 
Rater4 = round ((100*(Grand_Mean + Item_main + (Rater_main4) + 
Rater_Item + e)),1);If Rater4 GT 100 then Rater4= 100;If Rater4 LT 1 
then Rater4= 1; 
Rater5 = round ((100*(Grand_Mean + Item_main + (Rater_main5) + 
Rater_Item + e)),1);If Rater5 GT 100 then Rater5= 100;If Rater5 LT 1 
then Rater5= 1; 
Rater6 = round ((100*(Grand_Mean + Item_main + (Rater_main6) + 
Rater_Item + e)),1);If Rater6 GT 100 then Rater6= 100;If Rater6 LT 1 
then Rater6= 1; 
Rater7 = round ((100*(Grand_Mean + Item_main + (Rater_main7) + 
Rater_Item + e)),1);If Rater7 GT 100 then Rater7= 100;If Rater7 LT 1 
then Rater7= 1; 
Rater8 = round ((100*(Grand_Mean + Item_main + (Rater_main8) + 
Rater_Item + e)),1);If Rater8 GT 100 then Rater8= 100;If Rater8 LT 1 
then Rater8= 1; 
Rater9 = round ((100*(Grand_Mean + Item_main + (Rater_main9) + 
Rater_Item + e)),1);If Rater9 GT 100 then Rater9= 100;If Rater9 LT 1 
then Rater9= 1; 
Rater10 = round ((100*(Grand_Mean + Item_main + (Rater_main10) + 
Rater_Item + e)),1);If Rater10 GT 100 then Rater10= 100;If Rater10 
LT 1 then Rater10= 1; 
Rater11 = round ((100*(Grand_Mean + Item_main + (Rater_main11) + 
Rater_Item + e)),1);If Rater11 GT 100 then Rater11= 100;If Rater11 
LT 1 then Rater11= 1; 
Rater12 = round ((100*(Grand_Mean + Item_main + (Rater_main12) + 
Rater_Item + e)),1);If Rater12 GT 100 then Rater12= 100;If Rater12 
LT 1 then Rater12= 1; 
 
Diff = Max(of Rater1-Rater12) - Min(of Rater1-Rater12); 
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Stdev = round (std(Rater1, Rater2, Rater3, Rater4, Rater5, Rater6, 
Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
Rater_Avg = round (mean(Rater1, Rater2, Rater3, Rater4, Rater5, 
Rater6, Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
 
* Natural Log Check; 
NLogData = ((Rater_Avg*.01)-C)/(1-(Rater_Avg*.01)); 
If NLogData LE 0 Then NLogData = .01; 
Theta_Cal = (log(NLogData)+(1.7*A*B))/(1.7*A); 
 
Phase = 2; 
 
Rep = symget('Rep'); 
Rel = symget('Rel'); 
Per = symget('Per'); 
Direct = symget('Direct'); 
theta_mc = symget('Theta'); 
 
/* Datacheck 
proc means N Mean Std var MIN MAX SKEW KURT data = Phase2 ; 
var Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Theta_cal; 
*/ 
 
*proc print noobs data=Phase2; 
*Var Theta_mc Bank A B C Grand_mean Rater1 Rater2 Rater3 Rater4 
Rater5 Rater6 Rater7 Rater8 Rater9 Rater10 Rater11 Rater12 Rater_Avg 
Stdev  Theta_Cal Diff; 
 
 
/*******************************************************************
********************************** 
    RATER X ITEM INTERACTION EFFECT Phase 3 
********************************************************************
**********************************/ 
Data Phase3; 
set IRT; 
 
Grand_mean = &Grand_mean; 
Item_main = Grand_Item - &Grand_mean; 
Rater_main = 0; 
Rater_Item = 0; 
e=0; 
 
/* Rater Main Effect */  
Rater_main1 = (.01*(&RE1));  
Rater_main2 = (.01*(&RE2));  
Rater_main3 = (.01*(&RE3));  
Rater_main4 = (.01*(&RE4));  
Rater_main5 = (.01*(&RE5)); 
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Rater_main6 = (.01*(&RE6));  
Rater_main7 = (.01*(&RE7));  
Rater_main8 = (.01*(&RE8));  
Rater_main9 = (.01*(&RE9));  
Rater_main10 = (.01*(&RE10));  
Rater_main11 = (.01*(&RE11));  
Rater_main12 = (.01*(&RE12));  
 
Rel = symget('Rel'); 
 
/* Rater X Item Interaction 1 Error */  
Err_mean = 0; 
Err_SD = 6.4;****************************************Sim; 
I = 0; 
Array Ran_Err[*] Err1 - Err12; 
Do I = 1 To 12; 
Ran_Err [I] = (.01*(Err_mean + (Err_SD * rannor(0))));  
End; 
 
Err_mean = 0; 
Err_SD2 = Rel;***************************************Sim; 
 
Per = symget('Per'); 
 
If Per = 25 then do; 
Err3 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err6 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
Err9 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
end; 
 
If Per = 50 then do; 
Err1 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err3 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err5 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err7 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
Err9 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
Err11 =(.01*(Err_mean + (Err_SD2 * rannor(0))));  
end; 
 
If Per = 75 then do; 
Err1 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err2 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err4 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err5 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err7 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
Err8 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
Err10 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
Err11 = (.01*(Err_mean + (Err_SD2 * rannor(0))));  
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Err12 = (.01*(Err_mean + (Err_SD2 * rannor(0)))); 
end; 
 
*RI_Err = .01 * (Err_mean + (Err_SD2 * rannor(0))); 
 
Rater1 = round ((100*(Grand_Mean + Item_main + (Rater_main1) + 
(Rater_Item + Err1 + e))),1);If Rater1 GT 100 then Rater1= 100;If 
Rater1 LT 1 then Rater1= 1; 
Rater2 = round ((100*(Grand_Mean + Item_main + (Rater_main2) + 
(Rater_Item + Err2 + e))),1);If Rater2 GT 100 then Rater2= 100;If 
Rater2 LT 1 then Rater2= 1; 
Rater3 = round ((100*(Grand_Mean + Item_main + (Rater_main3) + 
(Rater_Item + Err3 + e))),1);If Rater3 GT 100 then Rater3= 100;If 
Rater3 LT 1 then Rater3= 1; 
Rater4 = round ((100*(Grand_Mean + Item_main + (Rater_main4) + 
(Rater_Item + Err4 + e))),1);If Rater4 GT 100 then Rater4= 100;If 
Rater4 LT 1 then Rater4= 1; 
Rater5 = round ((100*(Grand_Mean + Item_main + (Rater_main5) + 
(Rater_Item + Err5 + e))),1);If Rater5 GT 100 then Rater5= 100;If 
Rater5 LT 1 then Rater5= 1; 
Rater6 = round ((100*(Grand_Mean + Item_main + (Rater_main6) + 
(Rater_Item + Err6 + e))),1);If Rater6 GT 100 then Rater6= 100;If 
Rater6 LT 1 then Rater6= 1; 
Rater7 = round ((100*(Grand_Mean + Item_main + (Rater_main7) + 
(Rater_Item + Err7 + e))),1);If Rater7 GT 100 then Rater7= 100;If 
Rater7 LT 1 then Rater7= 1; 
Rater8 = round ((100*(Grand_Mean + Item_main + (Rater_main8) + 
(Rater_Item + Err8 + e))),1);If Rater8 GT 100 then Rater8= 100;If 
Rater8 LT 1 then Rater8= 1; 
Rater9 = round ((100*(Grand_Mean + Item_main + (Rater_main9) + 
(Rater_Item + Err9 + e))),1);If Rater9 GT 100 then Rater9= 100;If 
Rater9 LT 1 then Rater9= 1; 
Rater10 = round ((100*(Grand_Mean + Item_main + (Rater_main10) + 
(Rater_Item + Err10 + e))),1);If Rater10 GT 100 then Rater10= 100;If 
Rater10 LT 1 then Rater10= 1; 
Rater11 = round ((100*(Grand_Mean + Item_main + (Rater_main11) + 
(Rater_Item + Err11 + e))),1);If Rater11 GT 100 then Rater11= 100;If 
Rater11 LT 1 then Rater11= 1; 
Rater12 = round ((100*(Grand_Mean + Item_main + (Rater_main12) + 
(Rater_Item + Err12 + e))),1);If Rater12 GT 100 then Rater12= 100;If 
Rater12 LT 1 then Rater12= 1; 
 
Diff = Max(of Rater1-Rater12) - Min(of Rater1-Rater12); 
Stdev = round (std(Rater1, Rater2, Rater3, Rater4, Rater5, Rater6, 
Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
Rater_Avg = round (mean(Rater1, Rater2, Rater3, Rater4, Rater5, 
Rater6, Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
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* Natural Log Check; 
NLogData = ((Rater_Avg*.01)-C)/(1-(Rater_Avg*.01)); 
If NLogData LE 0 Then NLogData = .01; 
Theta_Cal = (log(NLogData)+(1.7*A*B))/(1.7*A); 
 
Phase = 3; 
 
Rep = symget('Rep'); 
Direct = symget('Direct'); 
theta_mc = symget('Theta'); 
 
/*******************************************************************
********************************** 
    Group Dynamics EFFECT Phase 4 
********************************************************************
**********************************/ 
 
/* Create Rater Influence Factor*/ 
data Influence_Factors; 
array RI[*] RI1- RI12; 
do I = 1 To 12; 
RI [I] = 0.7 + (0.1 * rannor(0));          
End; 
 
call symput('RI1', RI1);  
call symput('RI2', RI2);  
call symput('RI3', RI3); 
call symput('RI4', RI4); 
call symput('RI5', RI5); 
call symput('RI6', RI6); 
call symput('RI7', RI7); 
call symput('RI8', RI8); 
call symput('RI9', RI9); 
call symput('RI10', RI10); 
call symput('RI11', RI11); 
call symput('RI12', RI12); 
 
Data Phase4; 
set Phase3; 
 
RMIN=min(of rater1-rater12); 
RMAX=max(of rater1-rater12); 
RMEAN=mean(of rater1-rater12); 
 
Direct = symget('Direct'); 
If Direct = 1 then XX=RMIN; 
If Direct = 2 then XX=RMEAN; 
If Direct = 3 then XX=RMAX; 
 
influ1 = (&RI1);  
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influ2 = (&RI2);  
influ3 = (&RI3);  
influ4 = (&RI4);  
influ5 = (&RI5); 
influ6 = (&RI6);  
influ7 = (&RI7);  
influ8 = (&RI8);  
influ9 = (&RI9);  
influ10 = (&RI10);  
influ11 = (&RI11);  
influ12 = (&RI12);  
 
*rating = rating + (influ - rating) * influence_factor;  
 
Rater1 = round (XX + ((rater1 - XX)* (&RI1)),1);  
Rater2 = round (XX + ((rater2 - XX)* (&RI2)),1);  
Rater3 = round (XX + ((rater3 - XX)* (&RI3)),1);  
Rater4 = round (XX + ((rater4 - XX)* (&RI4)),1);  
Rater5 = round (XX + ((rater5 - XX)* (&RI5)),1); 
Rater6 = round (XX + ((rater6 - XX)* (&RI6)),1); 
Rater7 = round (XX + ((rater7 - XX)* (&RI7)),1); 
Rater8 = round (XX + ((rater8 - XX)* (&RI8)),1); 
Rater9 = round (XX + ((rater9 - XX)* (&RI9)),1); 
Rater10 = round (XX + ((rater10 - XX)* (&RI10)),1);  
Rater11 = round (XX + ((rater11 - XX)* (&RI11)),1);  
Rater12 = round (XX + ((rater12 - XX)* (&RI12)),1); 
 
Phase = 4; 
 
Direct = symget('Direct'); 
Diff = Max(of Rater1-Rater12) - Min(of Rater1-Rater12); 
Stdev = round (std(Rater1, Rater2, Rater3, Rater4, Rater5, Rater6, 
Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
Rater_Avg = round (mean(Rater1, Rater2, Rater3, Rater4, Rater5, 
Rater6, Rater7, Rater8, Rater9, Rater10, Rater11, Rater12),.01); 
 
* Natural Log Check; 
NLogData = ((Rater_Avg*.01)-C)/(1-(Rater_Avg*.01)); 
If NLogData LE 0 Then NLogData = .01; 
Theta_Cal = (log(NLogData)+(1.7*A*B))/(1.7*A); 
 
/*******************************************************************
********************************** 
Stratified Sampling Procedure 
********************************************************************
**********************************/ 
%Put Var&I; 
 
%If &&Var&I = 36 %then %do; 
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%Let L1 = 6; 
%Let L2 = 5; 
%Let L3 = 1; 
%Let L4 = 4; 
%Let L5 = 4; 
%Let L6 = 4; 
%Let L7 = 2; 
%Let L8 = 3; 
%Let L9 = 7; 
%end; 
 
%If &&Var&I = 47 %then %do; 
%Let L1 = 7; 
%Let L2 = 7; 
%Let L3 = 1; 
%Let L4 = 6; 
%Let L5 = 5; 
%Let L6 = 5; 
%Let L7 = 3; 
%Let L8 = 4; 
%Let L9 = 9; 
%end; 
 
%If &&Var&I = 72 %then %do; 
%Let L1 = 11; 
%Let L2 = 10; 
%Let L3 = 2; 
%Let L4 = 8; 
%Let L5 = 8; 
%Let L6 = 8; 
%Let L7 = 5; 
%Let L8 = 6; 
%Let L9 = 14; 
%end; 
 
%If &&Var&I = 94 %then %do; 
%Let L1 = 14; 
%Let L2 = 14; 
%Let L3 = 3; 
%Let L4 = 11; 
%Let L5 = 10; 
%Let L6 = 11; 
%Let L7 = 6; 
%Let L8 = 7; 
%Let L9 = 18; 
%end; 
 
%If &&Var&I = 107 %then %do; 
%Let L1 = 16; 
%Let L2 = 16; 
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%Let L3 = 3; 
%Let L4 = 13; 
%Let L5 = 11; 
%Let L6 = 12; 
%Let L7 = 7; 
%Let L8 = 8; 
%Let L9 = 21; 
%end; 
 
%If &&Var&I = 143 %then %do; 
%Let L1 = 22; 
%Let L2 = 21; 
%Let L3 = 4; 
%Let L4 = 17; 
%Let L5 = 15; 
%Let L6 = 16; 
%Let L7 = 9; 
%Let L8 = 11; 
%Let L9 = 28; 
%end; 
 
proc sort; 
by IRT_LEVEL; 
 
proc surveyselect data=Phase4 method=srs rep = 1  
n=(&L1 &L2 &L3 &L4 &L5 &L6 &L7 &L8 &L9) out=obsout noprint; 
strata IRT_Level; 
  id _all_; 
 
Proc means N mean median std min max noprint data=obsout; 
class Rep; 
var Theta_cal; 
output out= obsout_mean N=N_Sam Mean=Theta_cal_mean_sam 
Median=Theta_cal_med_sam Std=Theta_cal_std_sam; 
 
Data Phase4; 
merge Phase4 obsout_mean; 
by Rep; 
if _type_=1; 
run; 
 
/* Datacheck*/ 
proc means N Mean Std var MIN MAX SKEW KURT data = Phase4; 
var Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Rater10 Rater11 Rater12 Theta_cal; 
run; 
 
*proc print noobs data=Phase3; 
*Var Theta_mc Bank A B C Grand_mean Rater1 Rater2 Rater3 Rater4 
Rater5 Rater6 Rater7 Rater8 Rater9 Rater10 Rater11 Rater12 Rater_Avg 
Stdev Theta_Cal Diff; 
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/*******************************************************************
********************************** 
    G-Theory Phase 1 
********************************************************************
**********************************/ 
/* 
Data Trans1; 
set Phase1; 
Keep Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Rater10 Rater11 Rater12 Bank;  
proc sort; 
by Bank; 
proc transpose data=Trans1 out=Trans1_out; 
   by Bank; 
PROC FORMAT; 
 Value $rfmt  'Rater1'=1  'Rater2'=2  'Rater3'=3 'Rater4'=4 
'Rater5'=5 
                   'Rater6'=6  'Rater7'=7  'Rater8'=8 'Rater9'=9 
'Rater10'=10 'Rater11'=11 'Rater12'=12; 
Data Trans1_out; 
set Trans1_out; 
Format _Name_ $rfmt. ; 
Rater = _Name_;Drop Rater; 
Rename _Name_ = Raters; 
Rename Col1 = Score; 
Rename Bank = Item; 
*proc print data=long1; 
*run; 
 
proc varcomp; 
class Item Raters; 
model Score = Item Raters Item*Raters; 
run; 
 
*Create Observed Datasets to check reliability; 
Data Obs_Check; 
set Phase4; 
oRater1 = Rater1; 
oRater2 = Rater2; 
oRater3 = Rater3; 
oRater4 = Rater4; 
oRater5 = Rater5; 
oRater6 = Rater6; 
oRater7 = Rater7; 
oRater8 = Rater8; 
oRater9 = Rater9; 
oRater10 = Rater10; 
oRater11 = Rater11; 
oRater12 = Rater12; 
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Keep oRater1 oRater2 oRater3 oRater4 oRater5 oRater6 oRater7 oRater8 
oRater9 oRater10 oRater11 oRater12; 
 
/*******************************************************************
********************************** 
    G-Theory Phase 2 
********************************************************************
**********************************/ 
/* 
Data Trans2; 
set Phase2; 
Keep Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Rater10 Rater11 Rater12 Bank;  
proc sort; 
by Bank; 
proc transpose data=Trans2 out=Trans2_out; 
   by Bank; 
PROC FORMAT; 
 Value $rfmt  'Rater1'=1  'Rater2'=2  'Rater3'=3 'Rater4'=4 
'Rater5'=5 
                 'Rater6'=6  'Rater7'=7  'Rater8'=8 'Rater9'=9 
'Rater10'=10 'Rater11'=11 'Rater12'=12; 
Data Trans2_out; 
set Trans2_out; 
Format _Name_ $rfmt. ; 
Rater = _Name_;Drop Rater; 
Rename _Name_ = Raters; 
Rename Col1 = Score; 
Rename Bank = Item; 
 
proc varcomp data=Trans2_out; 
class Item Raters; 
model Score = Item Raters Item*Raters; 
run; 
 
/*******************************************************************
********************************** 
    G-Theory Phase 3 
********************************************************************
**********************************/ 
/* 
Data Trans2; 
set Phase3; 
Keep Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Rater10 Rater11 Rater12 Bank;  
proc sort; 
by Bank; 
proc transpose data=Trans2 out=Trans2_out; 
   by Bank; 
PROC FORMAT; 
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 Value $rfmt  'Rater1'=1  'Rater2'=2  'Rater3'=3 'Rater4'=4 
'Rater5'=5 
                   'Rater6'=6  'Rater7'=7  'Rater8'=8 'Rater9'=9 
'Rater10'=10 'Rater11'=11 'Rater12'=12; 
Data Trans2_out; 
set Trans2_out; 
Format _Name_ $rfmt. ; 
Rater = _Name_;Drop Rater; 
Rename _Name_ = Raters; 
Rename Col1 = Score; 
Rename Bank = Item; 
 
proc varcomp data=Trans2_out; 
class Item Raters; 
model Score = Item Raters Item*Raters; 
run; 
 
/*******************************************************************
********************************** 
    G-Theory Phase 4 
********************************************************************
**********************************/ 
/* 
Data Trans2; 
set Phase4; 
Keep Rater1 Rater2 Rater3 Rater4 Rater5 Rater6 Rater7 Rater8 Rater9 
Rater10 Rater11 Rater12 Bank;  
proc sort; 
by Bank; 
proc transpose data=Trans2 out=Trans2_out; 
   by Bank; 
PROC FORMAT; 
 Value $rfmt  'Rater1'=1  'Rater2'=2  'Rater3'=3 'Rater4'=4 
'Rater5'=5 
                   'Rater6'=6  'Rater7'=7  'Rater8'=8 'Rater9'=9 
'Rater10'=10 'Rater11'=11 'Rater12'=12; 
Data Trans2_out; 
set Trans2_out; 
Format _Name_ $rfmt. ; 
Rater = _Name_;Drop Rater; 
Rename _Name_ = Raters; 
Rename Col1 = Score; 
Rename Bank = Item; 
 
proc varcomp data=Trans2_out; 
class Item Raters; 
model Score = Item Raters Item*Raters; 
run; 
 
/*******************************************************************
********************************** 
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    START Check Error 
********************************************************************
**********************************/ 
/* 
Data rel_check&Rep; 
set Obs_check; 
keep oRater1 oRater3 oRater5 oRater6 oRater9 oRater12; 
Rename oRater1 = oRater1R&Rep; 
Rename oRater3 = oRater3R&Rep; 
Rename oRater5 = oRater5R&Rep; 
Rename oRater6 = oRater6R&Rep; 
Rename oRater9 = oRater9R&Rep; 
Rename oRater12 = oRater12R&Rep; 
 
Data Rater_Reliability; 
merge True_Check Obs_Check; 
 
proc corr data=Rater_Reliability noprint outp=error_check; 
 
*proc print data = Obs; 
*var r_xx2 Err_SD2 RI_Err rater5 rater6; 
 
proc corr data=Rater_Reliability; 
var oRater1 oRater2 oRater3 oRater5 oRater6 oRater9 oRater12; 
run; 
 
Data error_check2; 
set error_check; 
if _TYPE_ = 'CORR'; 
if _Name_ in ('tRater1', 'tRater2', 'tRater3', 'tRater4', 'tRater5', 
'tRater6', 'tRater7', 'tRater8', 'tRater9', 'tRater10', 'tRater11', 
'tRater12'); 
Drop tRater1 tRater2 tRater3 tRater4 tRater5 tRater6 tRater7 tRater8 
tRater9 tRater10 tRater11 tRater12 _type_ ; 
 
data error_check3; 
set error_check; 
True =_n_; 
array vars[*] oRater1- oRater12; 
do Obs = 1 to 12; 
if Obs = True then do; 
r = vars[Obs]; 
output; 
end; 
end; 
Drop oRater1- oRater12; 
proc print data=error_check; 
run; 
/* END Check Error *************************************/  
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/*******************************************************************
********************************** 
    Phase Compare 
********************************************************************
**********************************/ 
 
/* Get Phase1 Standard */  
proc means data = Phase1 noprint; 
ID Rep Rel Per Direct theta_mc; 
 var Rater_Avg Theta_cal Phase;  
 output out = Phase1_Stand median = Rater_median Theta_median mean = 
Rater_mean Theta_mean Phase  std = Rater_std Theta_std; 
 
/* Get Phase2 Standard */  
proc means data = Phase2 noprint; 
ID Rep Rel Per Direct theta_mc; 
 var Rater_Avg Theta_cal Phase; 
 output out = Phase2_Stand median = Rater_median Theta_median mean = 
Rater_mean Theta_mean Phase  std = Rater_std Theta_std; 
 
/* Get Phase3 Standard */  
proc means data = Phase3 noprint; 
 ID Rep Rel Per Direct theta_mc; 
 var Rater_Avg Theta_cal Phase; 
 output out = Phase3_Stand median = Rater_median Theta_median mean = 
Rater_mean Theta_mean Phase  std = Rater_std Theta_std; 
 
/* Get Phase4 Standard */  
proc means data = Phase4 noprint; 
 ID Rep Rel Per Direct theta_mc; 
 var Rater_Avg Theta_cal Theta_cal_mean_sam Theta_cal_med_sam 
Theta_cal_std_sam N_Sam Phase; 
 output out = Phase4_Stand&Rep median = Rater_median Theta_median 
mean = Rater_mean Theta_mean Theta_cal_mean_sam_mean 
Theta_cal_med_sam_mean Theta_cal_std_sam_mean N_Sam Phase  std = 
Rater_std Theta_std ; 
 
/* Merge data files */  
PROC APPEND 
     BASE=Phase1_Stand 
     DATA=Phase2_Stand; 
 
PROC APPEND 
     BASE=Phase1_Stand 
     DATA=Phase3_Stand; 
 
Data Phase4_lite; 
Set Phase4_Stand&Rep; 
DROP Theta_cal_mean_sam_mean Theta_cal_med_sam_mean 
Theta_cal_std_sam_mean N_Sam; 
 



www.manaraa.com

 

 

Appendix B:  Example SAS code (continued) 

 
 

  
 211 

PROC APPEND 
     BASE=Phase1_Stand 
     DATA=Phase4_lite; 
 
PROC FORMAT; 
 Value cfmt 1 = "Phase 1" 
            2 = "Phase 2" 
            3 = "Phase 3" 
            4 = "Phase 4"; 
 
data All; 
RETAIN Phase Theta_mean Theta_median Theta_std Rater_mean 
Rater_median; 
set Phase1_Stand; 
Format Phase cfmt. ; 
 
*proc print data=All; 
 
proc append base=Phase4_Stand_Rep data=Phase4_Stand&Rep; 
 
*data Rel_check; 
*merge Rel_check Rel_check&Rep; 
 
*proc corr data=Rel_check; 
*var oRater1R1 oRater1R2 oRater1R3 oRater1R4 oRater1R5 ORater1R6; 
 
*proc corr data=Rel_check; 
*var oRater3R1 oRater3R2 oRater3R3 oRater3R4 oRater3R5 ORater3R6; 
 
*proc corr data=Rel_check; 
*var oRater5R1 oRater5R2 oRater5R3 oRater5R4 oRater5R5 ORater5R6; 
 
*proc corr data=Rel_check; 
*var oRater6R1 oRater6R2 oRater6R3 oRater6R4 oRater6R5 ORater6R6; 
 
*proc corr data=Rel_check; 
*var oRater9R1 oRater9R2 oRater9R3 oRater9R4 oRater9R5 ORater9R6; 
 
*proc corr data=Rel_check; 
*var oRater12R1 oRater12R2 oRater12R3 oRater12R4 oRater12R5 
ORater12R6; 
 
*Clear Old dataset; 
proc datasets nolist; delete Phase4_Stand&Rep; 
 
%end; 
%end; 
 
%Let Filename = SS_Sim.&Dist&Cond; 
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data &Filename; 
set Phase4_stand_Rep; 
 
*Outcomes; 
large_bias = theta_mean - theta_mc; 
small_bias = theta_cal_mean_sam_mean - theta_mc; 
between_bias = theta_cal_mean_sam_mean - theta_mean; 
 
large_bias_sq = ((theta_mean - theta_mc)*(theta_mean - theta_mc)); 
small_bias_sq = ((theta_cal_mean_sam_mean - 
theta_mc)*(theta_cal_mean_sam_mean - theta_mc)); 
between_bias_sq = ((theta_cal_mean_sam_mean - 
theta_mean)*(theta_cal_mean_sam_mean - theta_mean)); 
 
large_bias_a = ABS(theta_mean - theta_mc); 
small_bias_a = ABS(theta_cal_mean_sam_mean - theta_mc); 
between_bias_a = ABS(theta_cal_mean_sam_mean - theta_mean); 
Dist=SYMGET('Dist'); 
RaterN = &RaterN; 
run; 
 
data All_Rec; 
set &Filename; 
 
%mend SS_SIM; 
 
* +--------------------------------+ 
   Define 'dummy' files to reroute 
   the log and/or output windows 
  +--------------------------------+; 
 
filename junk dummy; 
filename junk2 dummy; 
 
/*******************************************************************
********************************** 
    Calls to the Macro 
********************************************************************
**********************************/ 
%SS_SIM(Rel = 12.5, Per = 25, Theta = -1, Direct = 1, Cond = 1); 
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 0, Direct = 1, Cond = 2);  
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 1, Direct = 1, Cond = 3);  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 50, Theta = -1, Direct = 1, Cond = 4); 
Run; 
%SS_SIM(Rel = 12.5, Per = 50, Theta = 0, Direct = 1, Cond = 5);  
Run; 
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%SS_SIM(Rel = 12.5, Per = 50, Theta = 1, Direct = 1, Cond = 6);  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 75, Theta = -1, Direct = 1, Cond = 7); 
Run; 
%SS_SIM(Rel = 12.5, Per = 75, Theta = 0, Direct = 1, Cond = 8);  
Run; 
%SS_SIM(Rel = 12.5, Per = 75, Theta = 1, Direct = 1, Cond = 9);  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 25, Theta = -1, Direct = 2, Cond = 10); 
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 0, Direct = 2, Cond = 11);  
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 1, Direct = 2, Cond = 12);  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 50, Theta = -1, Direct = 2, Cond = 13) 
Run; 
%SS_SIM(Rel = 12.5, Per = 50, Theta = 0, Direct = 2, Cond = 14)  
Run; 
%SS_SIM(Rel = 12.5, Per = 50, Theta = 1, Direct = 2, Cond = 15)  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 75, Theta = -1, Direct = 2, Cond = 16) 
Run; 
%SS_SIM(Rel = 12.5, Per = 75, Theta = 0, Direct = 2, Cond = 17)  
Run; 
%SS_SIM(Rel = 12.5, Per = 75, Theta = 1, Direct = 2, Cond = 18)  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 25, Theta = -1, Direct = 3, Cond = 19) 
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 0, Direct = 3, Cond = 20)  
Run; 
%SS_SIM(Rel = 12.5, Per = 25, Theta = 1, Direct = 3, Cond = 21)  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 50, Theta = -1, Direct = 3, Cond = 22) 
Run; 
%SS_SIM(Rel = 12.5, Per = 50, Theta = 0, Direct = 3, Cond = 23)  
Run; 
%SS_SIM(Rel = 12.5, Per = 50, Theta = 1, Direct = 3, Cond = 24)  
Run; 
 
%SS_SIM(Rel = 12.5, Per = 75, Theta = -1, Direct = 3, Cond = 25) 
Run; 
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%SS_SIM(Rel = 12.5, Per = 75, Theta = 0, Direct = 3, Cond = 26)  
Run; 
%SS_SIM(Rel = 12.5, Per = 75, Theta = 1, Direct = 3, Cond = 27)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 25, Theta = -1, Direct = 1, Cond = 28) 
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 0, Direct = 1, Cond = 29)  
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 1, Direct = 1, Cond = 30)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 50, Theta = -1, Direct = 1, Cond = 31) 
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 0, Direct = 1, Cond = 32)  
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 1, Direct = 1, Cond = 33)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 75, Theta = -1, Direct = 1, Cond = 34) 
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 0, Direct = 1, Cond = 35)  
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 1, Direct = 1, Cond = 36)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 25, Theta = -1, Direct = 2, Cond = 37) 
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 0, Direct = 2, Cond = 38)  
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 1, Direct = 2, Cond = 39)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 50, Theta = -1, Direct = 2, Cond = 40) 
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 0, Direct = 2, Cond = 41)  
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 1, Direct = 2, Cond = 42)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 75, Theta = -1, Direct = 2, Cond = 43) 
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 0, Direct = 2, Cond = 44)  
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 1, Direct = 2, Cond = 45)  
Run; 
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%SS_SIM(Rel = 17.5, Per = 25, Theta = -1, Direct = 3, Cond = 46) 
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 0, Direct = 3, Cond = 47)  
Run; 
%SS_SIM(Rel = 17.5, Per = 25, Theta = 1, Direct = 3, Cond = 48)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 50, Theta = -1, Direct = 3, Cond = 49) 
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 0, Direct = 3, Cond = 50)  
Run; 
%SS_SIM(Rel = 17.5, Per = 50, Theta = 1, Direct = 3, Cond = 51)  
Run; 
 
%SS_SIM(Rel = 17.5, Per = 75, Theta = -1, Direct = 3, Cond = 52) 
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 0, Direct = 3, Cond = 53)  
Run; 
%SS_SIM(Rel = 17.5, Per = 75, Theta = 1, Direct = 3, Cond = 54)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 25, Theta = -1, Direct = 1, Cond = 55) 
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 0, Direct = 1, Cond = 56)  
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 1, Direct = 1, Cond = 57)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 50, Theta = -1, Direct = 1, Cond = 58) 
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 0, Direct = 1, Cond = 59)  
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 1, Direct = 1, Cond = 60)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 75, Theta = -1, Direct = 1, Cond = 61) 
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 0, Direct = 1, Cond = 62)  
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 1, Direct = 1, Cond = 63)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 25, Theta = -1, Direct = 2, Cond = 64) 
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 0, Direct = 2, Cond = 65)  
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 1, Direct = 2, Cond = 66)  
Run; 
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%SS_SIM(Rel = 21.0, Per = 50, Theta = -1, Direct = 2, Cond = 67) 
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 0, Direct = 2, Cond = 68)  
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 1, Direct = 2, Cond = 69)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 75, Theta = -1, Direct = 2, Cond = 70) 
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 0, Direct = 2, Cond = 71)  
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 1, Direct = 2, Cond = 72)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 25, Theta = -1, Direct = 3, Cond = 73) 
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 0, Direct = 3, Cond = 74)  
Run; 
%SS_SIM(Rel = 21.0, Per = 25, Theta = 1, Direct = 3, Cond = 75)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 50, Theta = -1, Direct = 3, Cond = 76) 
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 0, Direct = 3, Cond = 77)  
Run; 
%SS_SIM(Rel = 21.0, Per = 50, Theta = 1, Direct = 3, Cond = 78)  
Run; 
 
%SS_SIM(Rel = 21.0, Per = 75, Theta = -1, Direct = 3, Cond = 79) 
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 0, Direct = 3, Cond = 80)  
Run; 
%SS_SIM(Rel = 21.0, Per = 75, Theta = 1, Direct = 3, Cond = 81)  
Run; 
 
 
*+--------------------------------+ 
  Turn on the output window again 
 +--------------------------------+; 
proc printto log = log; 
run; 
proc printto print = print; 
run; 
 
Proc means data=All_Rec n sum mean std; 
class rel per Direct N_Sam theta_mc; 
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var theta_mean between_bias large_bias small_bias between_bias_sq 
large_bias_sq small_bias_sq between_bias_a large_bias_a 
small_bias_a; 
run; 
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